Metamath Proof Explorer


Theorem ssd

Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypothesis ssd.1
|- ( ( ph /\ x e. A ) -> x e. B )
Assertion ssd
|- ( ph -> A C_ B )

Proof

Step Hyp Ref Expression
1 ssd.1
 |-  ( ( ph /\ x e. A ) -> x e. B )
2 nfv
 |-  F/ x ph
3 2 1 ssdf
 |-  ( ph -> A C_ B )