Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ssd.1 | |- ( ( ph /\ x e. A ) -> x e. B ) |
|
Assertion | ssd | |- ( ph -> A C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssd.1 | |- ( ( ph /\ x e. A ) -> x e. B ) |
|
2 | nfv | |- F/ x ph |
|
3 | 2 1 | ssdf | |- ( ph -> A C_ B ) |