Step |
Hyp |
Ref |
Expression |
1 |
|
ssdec.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
2 |
|
ssdec.2 |
|- ( ( ph /\ m e. ( M ..^ N ) ) -> ( F ` ( m + 1 ) ) C_ ( F ` m ) ) |
3 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
4 |
1 3
|
syl |
|- ( ph -> M e. ZZ ) |
5 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
6 |
1 5
|
syl |
|- ( ph -> N e. ZZ ) |
7 |
4 6
|
jca |
|- ( ph -> ( M e. ZZ /\ N e. ZZ ) ) |
8 |
|
eluzle |
|- ( N e. ( ZZ>= ` M ) -> M <_ N ) |
9 |
1 8
|
syl |
|- ( ph -> M <_ N ) |
10 |
6
|
zred |
|- ( ph -> N e. RR ) |
11 |
10
|
leidd |
|- ( ph -> N <_ N ) |
12 |
6 9 11
|
3jca |
|- ( ph -> ( N e. ZZ /\ M <_ N /\ N <_ N ) ) |
13 |
7 12
|
jca |
|- ( ph -> ( ( M e. ZZ /\ N e. ZZ ) /\ ( N e. ZZ /\ M <_ N /\ N <_ N ) ) ) |
14 |
|
fveq2 |
|- ( n = M -> ( F ` n ) = ( F ` M ) ) |
15 |
14
|
sseq1d |
|- ( n = M -> ( ( F ` n ) C_ ( F ` M ) <-> ( F ` M ) C_ ( F ` M ) ) ) |
16 |
15
|
imbi2d |
|- ( n = M -> ( ( ph -> ( F ` n ) C_ ( F ` M ) ) <-> ( ph -> ( F ` M ) C_ ( F ` M ) ) ) ) |
17 |
|
fveq2 |
|- ( n = m -> ( F ` n ) = ( F ` m ) ) |
18 |
17
|
sseq1d |
|- ( n = m -> ( ( F ` n ) C_ ( F ` M ) <-> ( F ` m ) C_ ( F ` M ) ) ) |
19 |
18
|
imbi2d |
|- ( n = m -> ( ( ph -> ( F ` n ) C_ ( F ` M ) ) <-> ( ph -> ( F ` m ) C_ ( F ` M ) ) ) ) |
20 |
|
fveq2 |
|- ( n = ( m + 1 ) -> ( F ` n ) = ( F ` ( m + 1 ) ) ) |
21 |
20
|
sseq1d |
|- ( n = ( m + 1 ) -> ( ( F ` n ) C_ ( F ` M ) <-> ( F ` ( m + 1 ) ) C_ ( F ` M ) ) ) |
22 |
21
|
imbi2d |
|- ( n = ( m + 1 ) -> ( ( ph -> ( F ` n ) C_ ( F ` M ) ) <-> ( ph -> ( F ` ( m + 1 ) ) C_ ( F ` M ) ) ) ) |
23 |
|
fveq2 |
|- ( n = N -> ( F ` n ) = ( F ` N ) ) |
24 |
23
|
sseq1d |
|- ( n = N -> ( ( F ` n ) C_ ( F ` M ) <-> ( F ` N ) C_ ( F ` M ) ) ) |
25 |
24
|
imbi2d |
|- ( n = N -> ( ( ph -> ( F ` n ) C_ ( F ` M ) ) <-> ( ph -> ( F ` N ) C_ ( F ` M ) ) ) ) |
26 |
|
ssidd |
|- ( ph -> ( F ` M ) C_ ( F ` M ) ) |
27 |
26
|
a1i |
|- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( ph -> ( F ` M ) C_ ( F ` M ) ) ) |
28 |
|
simpr |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> ph ) |
29 |
|
simplll |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> M e. ZZ ) |
30 |
|
simplr1 |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> m e. ZZ ) |
31 |
|
simplr2 |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> M <_ m ) |
32 |
29 30 31
|
3jca |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> ( M e. ZZ /\ m e. ZZ /\ M <_ m ) ) |
33 |
|
eluz2 |
|- ( m e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ m e. ZZ /\ M <_ m ) ) |
34 |
32 33
|
sylibr |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> m e. ( ZZ>= ` M ) ) |
35 |
|
simpllr |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> N e. ZZ ) |
36 |
|
simplr3 |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> m < N ) |
37 |
34 35 36
|
3jca |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> ( m e. ( ZZ>= ` M ) /\ N e. ZZ /\ m < N ) ) |
38 |
|
elfzo2 |
|- ( m e. ( M ..^ N ) <-> ( m e. ( ZZ>= ` M ) /\ N e. ZZ /\ m < N ) ) |
39 |
37 38
|
sylibr |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> m e. ( M ..^ N ) ) |
40 |
28 39 2
|
syl2anc |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> ( F ` ( m + 1 ) ) C_ ( F ` m ) ) |
41 |
40
|
3adant2 |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ( ph -> ( F ` m ) C_ ( F ` M ) ) /\ ph ) -> ( F ` ( m + 1 ) ) C_ ( F ` m ) ) |
42 |
|
simpr |
|- ( ( ( ph -> ( F ` m ) C_ ( F ` M ) ) /\ ph ) -> ph ) |
43 |
|
simpl |
|- ( ( ( ph -> ( F ` m ) C_ ( F ` M ) ) /\ ph ) -> ( ph -> ( F ` m ) C_ ( F ` M ) ) ) |
44 |
|
pm3.35 |
|- ( ( ph /\ ( ph -> ( F ` m ) C_ ( F ` M ) ) ) -> ( F ` m ) C_ ( F ` M ) ) |
45 |
42 43 44
|
syl2anc |
|- ( ( ( ph -> ( F ` m ) C_ ( F ` M ) ) /\ ph ) -> ( F ` m ) C_ ( F ` M ) ) |
46 |
45
|
3adant1 |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ( ph -> ( F ` m ) C_ ( F ` M ) ) /\ ph ) -> ( F ` m ) C_ ( F ` M ) ) |
47 |
41 46
|
sstrd |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ( ph -> ( F ` m ) C_ ( F ` M ) ) /\ ph ) -> ( F ` ( m + 1 ) ) C_ ( F ` M ) ) |
48 |
47
|
3exp |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) -> ( ( ph -> ( F ` m ) C_ ( F ` M ) ) -> ( ph -> ( F ` ( m + 1 ) ) C_ ( F ` M ) ) ) ) |
49 |
16 19 22 25 27 48
|
fzind |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( N e. ZZ /\ M <_ N /\ N <_ N ) ) -> ( ph -> ( F ` N ) C_ ( F ` M ) ) ) |
50 |
13 49
|
mpcom |
|- ( ph -> ( F ` N ) C_ ( F ` M ) ) |