Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssdf.1 | |- F/ x ph |
|
ssdf.2 | |- ( ( ph /\ x e. A ) -> x e. B ) |
||
Assertion | ssdf | |- ( ph -> A C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdf.1 | |- F/ x ph |
|
2 | ssdf.2 | |- ( ( ph /\ x e. A ) -> x e. B ) |
|
3 | 2 | ex | |- ( ph -> ( x e. A -> x e. B ) ) |
4 | 1 3 | ralrimi | |- ( ph -> A. x e. A x e. B ) |
5 | dfss3 | |- ( A C_ B <-> A. x e. A x e. B ) |
|
6 | 4 5 | sylibr | |- ( ph -> A C_ B ) |