Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssdf2.p | |- F/ x ph |
|
ssdf2.a | |- F/_ x A |
||
ssdf2.b | |- F/_ x B |
||
ssdf2.x | |- ( ( ph /\ x e. A ) -> x e. B ) |
||
Assertion | ssdf2 | |- ( ph -> A C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdf2.p | |- F/ x ph |
|
2 | ssdf2.a | |- F/_ x A |
|
3 | ssdf2.b | |- F/_ x B |
|
4 | ssdf2.x | |- ( ( ph /\ x e. A ) -> x e. B ) |
|
5 | 4 | ex | |- ( ph -> ( x e. A -> x e. B ) ) |
6 | 1 2 3 5 | ssrd | |- ( ph -> A C_ B ) |