Description: Difference law for subsets. (Contributed by NM, 28-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssdif | |- ( A C_ B -> ( A \ C ) C_ ( B \ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( A C_ B -> ( x e. A -> x e. B ) ) |
|
| 2 | 1 | anim1d | |- ( A C_ B -> ( ( x e. A /\ -. x e. C ) -> ( x e. B /\ -. x e. C ) ) ) |
| 3 | eldif | |- ( x e. ( A \ C ) <-> ( x e. A /\ -. x e. C ) ) |
|
| 4 | eldif | |- ( x e. ( B \ C ) <-> ( x e. B /\ -. x e. C ) ) |
|
| 5 | 2 3 4 | 3imtr4g | |- ( A C_ B -> ( x e. ( A \ C ) -> x e. ( B \ C ) ) ) |
| 6 | 5 | ssrdv | |- ( A C_ B -> ( A \ C ) C_ ( B \ C ) ) |