Metamath Proof Explorer


Theorem ssdif

Description: Difference law for subsets. (Contributed by NM, 28-May-1998)

Ref Expression
Assertion ssdif
|- ( A C_ B -> ( A \ C ) C_ ( B \ C ) )

Proof

Step Hyp Ref Expression
1 ssel
 |-  ( A C_ B -> ( x e. A -> x e. B ) )
2 1 anim1d
 |-  ( A C_ B -> ( ( x e. A /\ -. x e. C ) -> ( x e. B /\ -. x e. C ) ) )
3 eldif
 |-  ( x e. ( A \ C ) <-> ( x e. A /\ -. x e. C ) )
4 eldif
 |-  ( x e. ( B \ C ) <-> ( x e. B /\ -. x e. C ) )
5 2 3 4 3imtr4g
 |-  ( A C_ B -> ( x e. ( A \ C ) -> x e. ( B \ C ) ) )
6 5 ssrdv
 |-  ( A C_ B -> ( A \ C ) C_ ( B \ C ) )