Description: Subclass expressed in terms of difference. Exercise 7 of TakeutiZaring p. 22. (Contributed by NM, 29-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssdif0 | |- ( A C_ B <-> ( A \ B ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman | |- ( ( x e. A -> x e. B ) <-> -. ( x e. A /\ -. x e. B ) ) |
|
| 2 | eldif | |- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
|
| 3 | 1 2 | xchbinxr | |- ( ( x e. A -> x e. B ) <-> -. x e. ( A \ B ) ) |
| 4 | 3 | albii | |- ( A. x ( x e. A -> x e. B ) <-> A. x -. x e. ( A \ B ) ) |
| 5 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
| 6 | eq0 | |- ( ( A \ B ) = (/) <-> A. x -. x e. ( A \ B ) ) |
|
| 7 | 4 5 6 | 3bitr4i | |- ( A C_ B <-> ( A \ B ) = (/) ) |