Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssdifeq0 | |- ( A C_ ( B \ A ) <-> A = (/) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inidm | |- ( A i^i A ) = A | |
| 2 | ssdifin0 | |- ( A C_ ( B \ A ) -> ( A i^i A ) = (/) ) | |
| 3 | 1 2 | eqtr3id | |- ( A C_ ( B \ A ) -> A = (/) ) | 
| 4 | 0ss | |- (/) C_ ( B \ (/) ) | |
| 5 | id | |- ( A = (/) -> A = (/) ) | |
| 6 | difeq2 | |- ( A = (/) -> ( B \ A ) = ( B \ (/) ) ) | |
| 7 | 5 6 | sseq12d | |- ( A = (/) -> ( A C_ ( B \ A ) <-> (/) C_ ( B \ (/) ) ) ) | 
| 8 | 4 7 | mpbiri | |- ( A = (/) -> A C_ ( B \ A ) ) | 
| 9 | 3 8 | impbii | |- ( A C_ ( B \ A ) <-> A = (/) ) |