Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ssdifeq0 | |- ( A C_ ( B \ A ) <-> A = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm | |- ( A i^i A ) = A |
|
2 | ssdifin0 | |- ( A C_ ( B \ A ) -> ( A i^i A ) = (/) ) |
|
3 | 1 2 | eqtr3id | |- ( A C_ ( B \ A ) -> A = (/) ) |
4 | 0ss | |- (/) C_ ( B \ (/) ) |
|
5 | id | |- ( A = (/) -> A = (/) ) |
|
6 | difeq2 | |- ( A = (/) -> ( B \ A ) = ( B \ (/) ) ) |
|
7 | 5 6 | sseq12d | |- ( A = (/) -> ( A C_ ( B \ A ) <-> (/) C_ ( B \ (/) ) ) ) |
8 | 4 7 | mpbiri | |- ( A = (/) -> A C_ ( B \ A ) ) |
9 | 3 8 | impbii | |- ( A C_ ( B \ A ) <-> A = (/) ) |