Description: Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | ssdifim | |- ( ( A C_ V /\ B = ( V \ A ) ) -> A = ( V \ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss4 | |- ( A C_ V <-> ( V \ ( V \ A ) ) = A ) |
|
2 | eqcom | |- ( ( V \ ( V \ A ) ) = A <-> A = ( V \ ( V \ A ) ) ) |
|
3 | 1 2 | sylbb | |- ( A C_ V -> A = ( V \ ( V \ A ) ) ) |
4 | difeq2 | |- ( B = ( V \ A ) -> ( V \ B ) = ( V \ ( V \ A ) ) ) |
|
5 | 4 | eqcomd | |- ( B = ( V \ A ) -> ( V \ ( V \ A ) ) = ( V \ B ) ) |
6 | 3 5 | sylan9eq | |- ( ( A C_ V /\ B = ( V \ A ) ) -> A = ( V \ B ) ) |