Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013) (Proof shortened by Mario Carneiro, 24-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ssdifin0 | |- ( A C_ ( B \ C ) -> ( A i^i C ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin | |- ( A C_ ( B \ C ) -> ( A i^i C ) C_ ( ( B \ C ) i^i C ) ) |
|
2 | disjdifr | |- ( ( B \ C ) i^i C ) = (/) |
|
3 | sseq0 | |- ( ( ( A i^i C ) C_ ( ( B \ C ) i^i C ) /\ ( ( B \ C ) i^i C ) = (/) ) -> ( A i^i C ) = (/) ) |
|
4 | 1 2 3 | sylancl | |- ( A C_ ( B \ C ) -> ( A i^i C ) = (/) ) |