Metamath Proof Explorer


Theorem ssdifin0

Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013) (Proof shortened by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion ssdifin0
|- ( A C_ ( B \ C ) -> ( A i^i C ) = (/) )

Proof

Step Hyp Ref Expression
1 ssrin
 |-  ( A C_ ( B \ C ) -> ( A i^i C ) C_ ( ( B \ C ) i^i C ) )
2 incom
 |-  ( ( B \ C ) i^i C ) = ( C i^i ( B \ C ) )
3 disjdif
 |-  ( C i^i ( B \ C ) ) = (/)
4 2 3 eqtri
 |-  ( ( B \ C ) i^i C ) = (/)
5 sseq0
 |-  ( ( ( A i^i C ) C_ ( ( B \ C ) i^i C ) /\ ( ( B \ C ) i^i C ) = (/) ) -> ( A i^i C ) = (/) )
6 1 4 5 sylancl
 |-  ( A C_ ( B \ C ) -> ( A i^i C ) = (/) )