Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013) (Proof shortened by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssdifin0 | |- ( A C_ ( B \ C ) -> ( A i^i C ) = (/) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrin | |- ( A C_ ( B \ C ) -> ( A i^i C ) C_ ( ( B \ C ) i^i C ) ) | |
| 2 | disjdifr | |- ( ( B \ C ) i^i C ) = (/) | |
| 3 | sseq0 | |- ( ( ( A i^i C ) C_ ( ( B \ C ) i^i C ) /\ ( ( B \ C ) i^i C ) = (/) ) -> ( A i^i C ) = (/) ) | |
| 4 | 1 2 3 | sylancl | |- ( A C_ ( B \ C ) -> ( A i^i C ) = (/) ) |