Step |
Hyp |
Ref |
Expression |
1 |
|
difss2 |
|- ( A C_ ( B \ { C } ) -> A C_ B ) |
2 |
|
reldisj |
|- ( A C_ B -> ( ( A i^i { C } ) = (/) <-> A C_ ( B \ { C } ) ) ) |
3 |
2
|
bicomd |
|- ( A C_ B -> ( A C_ ( B \ { C } ) <-> ( A i^i { C } ) = (/) ) ) |
4 |
1 3
|
biadanii |
|- ( A C_ ( B \ { C } ) <-> ( A C_ B /\ ( A i^i { C } ) = (/) ) ) |
5 |
|
disjsn |
|- ( ( A i^i { C } ) = (/) <-> -. C e. A ) |
6 |
5
|
anbi2i |
|- ( ( A C_ B /\ ( A i^i { C } ) = (/) ) <-> ( A C_ B /\ -. C e. A ) ) |
7 |
4 6
|
bitri |
|- ( A C_ ( B \ { C } ) <-> ( A C_ B /\ -. C e. A ) ) |