Description: Symmetric class differences for subclasses. (Contributed by AV, 3-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | ssdifsym | |- ( ( A C_ V /\ B C_ V ) -> ( B = ( V \ A ) <-> A = ( V \ B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifim | |- ( ( A C_ V /\ B = ( V \ A ) ) -> A = ( V \ B ) ) |
|
2 | 1 | ex | |- ( A C_ V -> ( B = ( V \ A ) -> A = ( V \ B ) ) ) |
3 | 2 | adantr | |- ( ( A C_ V /\ B C_ V ) -> ( B = ( V \ A ) -> A = ( V \ B ) ) ) |
4 | ssdifim | |- ( ( B C_ V /\ A = ( V \ B ) ) -> B = ( V \ A ) ) |
|
5 | 4 | ex | |- ( B C_ V -> ( A = ( V \ B ) -> B = ( V \ A ) ) ) |
6 | 5 | adantl | |- ( ( A C_ V /\ B C_ V ) -> ( A = ( V \ B ) -> B = ( V \ A ) ) ) |
7 | 3 6 | impbid | |- ( ( A C_ V /\ B C_ V ) -> ( B = ( V \ A ) <-> A = ( V \ B ) ) ) |