Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007) (Proof shortened by JJ, 14-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | ssdisj | |- ( ( A C_ B /\ ( B i^i C ) = (/) ) -> ( A i^i C ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin | |- ( A C_ B -> ( A i^i C ) C_ ( B i^i C ) ) |
|
2 | eqimss | |- ( ( B i^i C ) = (/) -> ( B i^i C ) C_ (/) ) |
|
3 | 1 2 | sylan9ss | |- ( ( A C_ B /\ ( B i^i C ) = (/) ) -> ( A i^i C ) C_ (/) ) |
4 | ss0 | |- ( ( A i^i C ) C_ (/) -> ( A i^i C ) = (/) ) |
|
5 | 3 4 | syl | |- ( ( A C_ B /\ ( B i^i C ) = (/) ) -> ( A i^i C ) = (/) ) |