Step |
Hyp |
Ref |
Expression |
1 |
|
choccl |
|- ( B e. CH -> ( _|_ ` B ) e. CH ) |
2 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
3 |
|
ssmd2 |
|- ( ( ( _|_ ` B ) e. CH /\ ( _|_ ` A ) e. CH /\ ( _|_ ` B ) C_ ( _|_ ` A ) ) -> ( _|_ ` A ) MH ( _|_ ` B ) ) |
4 |
3
|
3expia |
|- ( ( ( _|_ ` B ) e. CH /\ ( _|_ ` A ) e. CH ) -> ( ( _|_ ` B ) C_ ( _|_ ` A ) -> ( _|_ ` A ) MH ( _|_ ` B ) ) ) |
5 |
1 2 4
|
syl2anr |
|- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` B ) C_ ( _|_ ` A ) -> ( _|_ ` A ) MH ( _|_ ` B ) ) ) |
6 |
|
chsscon3 |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( _|_ ` B ) C_ ( _|_ ` A ) ) ) |
7 |
|
dmdmd |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> ( _|_ ` A ) MH ( _|_ ` B ) ) ) |
8 |
5 6 7
|
3imtr4d |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_ B -> A MH* B ) ) |
9 |
8
|
3impia |
|- ( ( A e. CH /\ B e. CH /\ A C_ B ) -> A MH* B ) |