Metamath Proof Explorer


Theorem ssdmd1

Description: Ordering implies the dual modular pair property. Remark in MaedaMaeda p. 1. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion ssdmd1
|- ( ( A e. CH /\ B e. CH /\ A C_ B ) -> A MH* B )

Proof

Step Hyp Ref Expression
1 choccl
 |-  ( B e. CH -> ( _|_ ` B ) e. CH )
2 choccl
 |-  ( A e. CH -> ( _|_ ` A ) e. CH )
3 ssmd2
 |-  ( ( ( _|_ ` B ) e. CH /\ ( _|_ ` A ) e. CH /\ ( _|_ ` B ) C_ ( _|_ ` A ) ) -> ( _|_ ` A ) MH ( _|_ ` B ) )
4 3 3expia
 |-  ( ( ( _|_ ` B ) e. CH /\ ( _|_ ` A ) e. CH ) -> ( ( _|_ ` B ) C_ ( _|_ ` A ) -> ( _|_ ` A ) MH ( _|_ ` B ) ) )
5 1 2 4 syl2anr
 |-  ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` B ) C_ ( _|_ ` A ) -> ( _|_ ` A ) MH ( _|_ ` B ) ) )
6 chsscon3
 |-  ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( _|_ ` B ) C_ ( _|_ ` A ) ) )
7 dmdmd
 |-  ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> ( _|_ ` A ) MH ( _|_ ` B ) ) )
8 5 6 7 3imtr4d
 |-  ( ( A e. CH /\ B e. CH ) -> ( A C_ B -> A MH* B ) )
9 8 3impia
 |-  ( ( A e. CH /\ B e. CH /\ A C_ B ) -> A MH* B )