Step |
Hyp |
Ref |
Expression |
1 |
|
chsscon3 |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( _|_ ` B ) C_ ( _|_ ` A ) ) ) |
2 |
|
choccl |
|- ( B e. CH -> ( _|_ ` B ) e. CH ) |
3 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
4 |
|
ssmd1 |
|- ( ( ( _|_ ` B ) e. CH /\ ( _|_ ` A ) e. CH /\ ( _|_ ` B ) C_ ( _|_ ` A ) ) -> ( _|_ ` B ) MH ( _|_ ` A ) ) |
5 |
4
|
3expia |
|- ( ( ( _|_ ` B ) e. CH /\ ( _|_ ` A ) e. CH ) -> ( ( _|_ ` B ) C_ ( _|_ ` A ) -> ( _|_ ` B ) MH ( _|_ ` A ) ) ) |
6 |
2 3 5
|
syl2anr |
|- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` B ) C_ ( _|_ ` A ) -> ( _|_ ` B ) MH ( _|_ ` A ) ) ) |
7 |
1 6
|
sylbid |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_ B -> ( _|_ ` B ) MH ( _|_ ` A ) ) ) |
8 |
7
|
3impia |
|- ( ( A e. CH /\ B e. CH /\ A C_ B ) -> ( _|_ ` B ) MH ( _|_ ` A ) ) |