Description: A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg ). (Contributed by BTernaryTau, 12-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssdomfi | |- ( B e. Fin -> ( A C_ B -> A ~<_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi | |- ( _I |` A ) : A -1-1-onto-> A |
|
| 2 | f1of1 | |- ( ( _I |` A ) : A -1-1-onto-> A -> ( _I |` A ) : A -1-1-> A ) |
|
| 3 | 1 2 | ax-mp | |- ( _I |` A ) : A -1-1-> A |
| 4 | f1ss | |- ( ( ( _I |` A ) : A -1-1-> A /\ A C_ B ) -> ( _I |` A ) : A -1-1-> B ) |
|
| 5 | 3 4 | mpan | |- ( A C_ B -> ( _I |` A ) : A -1-1-> B ) |
| 6 | f1domfi | |- ( ( B e. Fin /\ ( _I |` A ) : A -1-1-> B ) -> A ~<_ B ) |
|
| 7 | 5 6 | sylan2 | |- ( ( B e. Fin /\ A C_ B ) -> A ~<_ B ) |
| 8 | 7 | ex | |- ( B e. Fin -> ( A C_ B -> A ~<_ B ) ) |