Step |
Hyp |
Ref |
Expression |
1 |
|
ssexg |
|- ( ( A C_ B /\ B e. V ) -> A e. _V ) |
2 |
|
simpr |
|- ( ( A C_ B /\ B e. V ) -> B e. V ) |
3 |
|
f1oi |
|- ( _I |` A ) : A -1-1-onto-> A |
4 |
|
dff1o3 |
|- ( ( _I |` A ) : A -1-1-onto-> A <-> ( ( _I |` A ) : A -onto-> A /\ Fun `' ( _I |` A ) ) ) |
5 |
3 4
|
mpbi |
|- ( ( _I |` A ) : A -onto-> A /\ Fun `' ( _I |` A ) ) |
6 |
5
|
simpli |
|- ( _I |` A ) : A -onto-> A |
7 |
|
fof |
|- ( ( _I |` A ) : A -onto-> A -> ( _I |` A ) : A --> A ) |
8 |
6 7
|
ax-mp |
|- ( _I |` A ) : A --> A |
9 |
|
fss |
|- ( ( ( _I |` A ) : A --> A /\ A C_ B ) -> ( _I |` A ) : A --> B ) |
10 |
8 9
|
mpan |
|- ( A C_ B -> ( _I |` A ) : A --> B ) |
11 |
|
funi |
|- Fun _I |
12 |
|
cnvi |
|- `' _I = _I |
13 |
12
|
funeqi |
|- ( Fun `' _I <-> Fun _I ) |
14 |
11 13
|
mpbir |
|- Fun `' _I |
15 |
|
funres11 |
|- ( Fun `' _I -> Fun `' ( _I |` A ) ) |
16 |
14 15
|
ax-mp |
|- Fun `' ( _I |` A ) |
17 |
|
df-f1 |
|- ( ( _I |` A ) : A -1-1-> B <-> ( ( _I |` A ) : A --> B /\ Fun `' ( _I |` A ) ) ) |
18 |
10 16 17
|
sylanblrc |
|- ( A C_ B -> ( _I |` A ) : A -1-1-> B ) |
19 |
18
|
adantr |
|- ( ( A C_ B /\ B e. V ) -> ( _I |` A ) : A -1-1-> B ) |
20 |
|
f1dom2g |
|- ( ( A e. _V /\ B e. V /\ ( _I |` A ) : A -1-1-> B ) -> A ~<_ B ) |
21 |
1 2 19 20
|
syl3anc |
|- ( ( A C_ B /\ B e. V ) -> A ~<_ B ) |
22 |
21
|
expcom |
|- ( B e. V -> ( A C_ B -> A ~<_ B ) ) |