Metamath Proof Explorer


Theorem sselOLD

Description: Obsolete version of ssel as of 27-May-2024. (Contributed by NM, 5-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sselOLD
|- ( A C_ B -> ( C e. A -> C e. B ) )

Proof

Step Hyp Ref Expression
1 dfss2
 |-  ( A C_ B <-> A. x ( x e. A -> x e. B ) )
2 1 biimpi
 |-  ( A C_ B -> A. x ( x e. A -> x e. B ) )
3 2 19.21bi
 |-  ( A C_ B -> ( x e. A -> x e. B ) )
4 3 anim2d
 |-  ( A C_ B -> ( ( x = C /\ x e. A ) -> ( x = C /\ x e. B ) ) )
5 4 eximdv
 |-  ( A C_ B -> ( E. x ( x = C /\ x e. A ) -> E. x ( x = C /\ x e. B ) ) )
6 dfclel
 |-  ( C e. A <-> E. x ( x = C /\ x e. A ) )
7 dfclel
 |-  ( C e. B <-> E. x ( x = C /\ x e. B ) )
8 5 6 7 3imtr4g
 |-  ( A C_ B -> ( C e. A -> C e. B ) )