Metamath Proof Explorer


Theorem sselid

Description: Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014)

Ref Expression
Hypotheses sseli.1
|- A C_ B
sselid.2
|- ( ph -> C e. A )
Assertion sselid
|- ( ph -> C e. B )

Proof

Step Hyp Ref Expression
1 sseli.1
 |-  A C_ B
2 sselid.2
 |-  ( ph -> C e. A )
3 1 sseli
 |-  ( C e. A -> C e. B )
4 2 3 syl
 |-  ( ph -> C e. B )