Metamath Proof Explorer


Theorem sselii

Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999)

Ref Expression
Hypotheses sseli.1
|- A C_ B
sselii.2
|- C e. A
Assertion sselii
|- C e. B

Proof

Step Hyp Ref Expression
1 sseli.1
 |-  A C_ B
2 sselii.2
 |-  C e. A
3 1 sseli
 |-  ( C e. A -> C e. B )
4 2 3 ax-mp
 |-  C e. B