| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bren |  |-  ( A ~~ B <-> E. f f : A -1-1-onto-> B ) | 
						
							| 2 |  | f1odm |  |-  ( f : A -1-1-onto-> B -> dom f = A ) | 
						
							| 3 |  | vex |  |-  f e. _V | 
						
							| 4 | 3 | dmex |  |-  dom f e. _V | 
						
							| 5 | 2 4 | eqeltrrdi |  |-  ( f : A -1-1-onto-> B -> A e. _V ) | 
						
							| 6 |  | pwexg |  |-  ( A e. _V -> ~P A e. _V ) | 
						
							| 7 |  | inex1g |  |-  ( ~P A e. _V -> ( ~P A i^i { x | x ~~ C } ) e. _V ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( f : A -1-1-onto-> B -> ( ~P A i^i { x | x ~~ C } ) e. _V ) | 
						
							| 9 |  | f1ofo |  |-  ( f : A -1-1-onto-> B -> f : A -onto-> B ) | 
						
							| 10 |  | forn |  |-  ( f : A -onto-> B -> ran f = B ) | 
						
							| 11 | 9 10 | syl |  |-  ( f : A -1-1-onto-> B -> ran f = B ) | 
						
							| 12 | 3 | rnex |  |-  ran f e. _V | 
						
							| 13 | 11 12 | eqeltrrdi |  |-  ( f : A -1-1-onto-> B -> B e. _V ) | 
						
							| 14 |  | pwexg |  |-  ( B e. _V -> ~P B e. _V ) | 
						
							| 15 |  | inex1g |  |-  ( ~P B e. _V -> ( ~P B i^i { x | x ~~ C } ) e. _V ) | 
						
							| 16 | 13 14 15 | 3syl |  |-  ( f : A -1-1-onto-> B -> ( ~P B i^i { x | x ~~ C } ) e. _V ) | 
						
							| 17 |  | f1of1 |  |-  ( f : A -1-1-onto-> B -> f : A -1-1-> B ) | 
						
							| 18 | 17 | adantr |  |-  ( ( f : A -1-1-onto-> B /\ y C_ A ) -> f : A -1-1-> B ) | 
						
							| 19 | 13 | adantr |  |-  ( ( f : A -1-1-onto-> B /\ y C_ A ) -> B e. _V ) | 
						
							| 20 |  | simpr |  |-  ( ( f : A -1-1-onto-> B /\ y C_ A ) -> y C_ A ) | 
						
							| 21 |  | vex |  |-  y e. _V | 
						
							| 22 | 21 | a1i |  |-  ( ( f : A -1-1-onto-> B /\ y C_ A ) -> y e. _V ) | 
						
							| 23 |  | f1imaen2g |  |-  ( ( ( f : A -1-1-> B /\ B e. _V ) /\ ( y C_ A /\ y e. _V ) ) -> ( f " y ) ~~ y ) | 
						
							| 24 | 18 19 20 22 23 | syl22anc |  |-  ( ( f : A -1-1-onto-> B /\ y C_ A ) -> ( f " y ) ~~ y ) | 
						
							| 25 |  | entr |  |-  ( ( ( f " y ) ~~ y /\ y ~~ C ) -> ( f " y ) ~~ C ) | 
						
							| 26 | 24 25 | sylan |  |-  ( ( ( f : A -1-1-onto-> B /\ y C_ A ) /\ y ~~ C ) -> ( f " y ) ~~ C ) | 
						
							| 27 | 26 | expl |  |-  ( f : A -1-1-onto-> B -> ( ( y C_ A /\ y ~~ C ) -> ( f " y ) ~~ C ) ) | 
						
							| 28 |  | imassrn |  |-  ( f " y ) C_ ran f | 
						
							| 29 | 28 10 | sseqtrid |  |-  ( f : A -onto-> B -> ( f " y ) C_ B ) | 
						
							| 30 | 9 29 | syl |  |-  ( f : A -1-1-onto-> B -> ( f " y ) C_ B ) | 
						
							| 31 | 27 30 | jctild |  |-  ( f : A -1-1-onto-> B -> ( ( y C_ A /\ y ~~ C ) -> ( ( f " y ) C_ B /\ ( f " y ) ~~ C ) ) ) | 
						
							| 32 |  | elin |  |-  ( y e. ( ~P A i^i { x | x ~~ C } ) <-> ( y e. ~P A /\ y e. { x | x ~~ C } ) ) | 
						
							| 33 | 21 | elpw |  |-  ( y e. ~P A <-> y C_ A ) | 
						
							| 34 |  | breq1 |  |-  ( x = y -> ( x ~~ C <-> y ~~ C ) ) | 
						
							| 35 | 21 34 | elab |  |-  ( y e. { x | x ~~ C } <-> y ~~ C ) | 
						
							| 36 | 33 35 | anbi12i |  |-  ( ( y e. ~P A /\ y e. { x | x ~~ C } ) <-> ( y C_ A /\ y ~~ C ) ) | 
						
							| 37 | 32 36 | bitri |  |-  ( y e. ( ~P A i^i { x | x ~~ C } ) <-> ( y C_ A /\ y ~~ C ) ) | 
						
							| 38 |  | elin |  |-  ( ( f " y ) e. ( ~P B i^i { x | x ~~ C } ) <-> ( ( f " y ) e. ~P B /\ ( f " y ) e. { x | x ~~ C } ) ) | 
						
							| 39 | 3 | imaex |  |-  ( f " y ) e. _V | 
						
							| 40 | 39 | elpw |  |-  ( ( f " y ) e. ~P B <-> ( f " y ) C_ B ) | 
						
							| 41 |  | breq1 |  |-  ( x = ( f " y ) -> ( x ~~ C <-> ( f " y ) ~~ C ) ) | 
						
							| 42 | 39 41 | elab |  |-  ( ( f " y ) e. { x | x ~~ C } <-> ( f " y ) ~~ C ) | 
						
							| 43 | 40 42 | anbi12i |  |-  ( ( ( f " y ) e. ~P B /\ ( f " y ) e. { x | x ~~ C } ) <-> ( ( f " y ) C_ B /\ ( f " y ) ~~ C ) ) | 
						
							| 44 | 38 43 | bitri |  |-  ( ( f " y ) e. ( ~P B i^i { x | x ~~ C } ) <-> ( ( f " y ) C_ B /\ ( f " y ) ~~ C ) ) | 
						
							| 45 | 31 37 44 | 3imtr4g |  |-  ( f : A -1-1-onto-> B -> ( y e. ( ~P A i^i { x | x ~~ C } ) -> ( f " y ) e. ( ~P B i^i { x | x ~~ C } ) ) ) | 
						
							| 46 |  | f1ocnv |  |-  ( f : A -1-1-onto-> B -> `' f : B -1-1-onto-> A ) | 
						
							| 47 |  | f1of1 |  |-  ( `' f : B -1-1-onto-> A -> `' f : B -1-1-> A ) | 
						
							| 48 |  | f1f1orn |  |-  ( `' f : B -1-1-> A -> `' f : B -1-1-onto-> ran `' f ) | 
						
							| 49 |  | f1of1 |  |-  ( `' f : B -1-1-onto-> ran `' f -> `' f : B -1-1-> ran `' f ) | 
						
							| 50 | 47 48 49 | 3syl |  |-  ( `' f : B -1-1-onto-> A -> `' f : B -1-1-> ran `' f ) | 
						
							| 51 |  | vex |  |-  z e. _V | 
						
							| 52 | 51 | f1imaen |  |-  ( ( `' f : B -1-1-> ran `' f /\ z C_ B ) -> ( `' f " z ) ~~ z ) | 
						
							| 53 | 50 52 | sylan |  |-  ( ( `' f : B -1-1-onto-> A /\ z C_ B ) -> ( `' f " z ) ~~ z ) | 
						
							| 54 |  | entr |  |-  ( ( ( `' f " z ) ~~ z /\ z ~~ C ) -> ( `' f " z ) ~~ C ) | 
						
							| 55 | 53 54 | sylan |  |-  ( ( ( `' f : B -1-1-onto-> A /\ z C_ B ) /\ z ~~ C ) -> ( `' f " z ) ~~ C ) | 
						
							| 56 | 55 | expl |  |-  ( `' f : B -1-1-onto-> A -> ( ( z C_ B /\ z ~~ C ) -> ( `' f " z ) ~~ C ) ) | 
						
							| 57 |  | f1ofo |  |-  ( `' f : B -1-1-onto-> A -> `' f : B -onto-> A ) | 
						
							| 58 |  | imassrn |  |-  ( `' f " z ) C_ ran `' f | 
						
							| 59 |  | forn |  |-  ( `' f : B -onto-> A -> ran `' f = A ) | 
						
							| 60 | 58 59 | sseqtrid |  |-  ( `' f : B -onto-> A -> ( `' f " z ) C_ A ) | 
						
							| 61 | 57 60 | syl |  |-  ( `' f : B -1-1-onto-> A -> ( `' f " z ) C_ A ) | 
						
							| 62 | 56 61 | jctild |  |-  ( `' f : B -1-1-onto-> A -> ( ( z C_ B /\ z ~~ C ) -> ( ( `' f " z ) C_ A /\ ( `' f " z ) ~~ C ) ) ) | 
						
							| 63 | 46 62 | syl |  |-  ( f : A -1-1-onto-> B -> ( ( z C_ B /\ z ~~ C ) -> ( ( `' f " z ) C_ A /\ ( `' f " z ) ~~ C ) ) ) | 
						
							| 64 |  | elin |  |-  ( z e. ( ~P B i^i { x | x ~~ C } ) <-> ( z e. ~P B /\ z e. { x | x ~~ C } ) ) | 
						
							| 65 | 51 | elpw |  |-  ( z e. ~P B <-> z C_ B ) | 
						
							| 66 |  | breq1 |  |-  ( x = z -> ( x ~~ C <-> z ~~ C ) ) | 
						
							| 67 | 51 66 | elab |  |-  ( z e. { x | x ~~ C } <-> z ~~ C ) | 
						
							| 68 | 65 67 | anbi12i |  |-  ( ( z e. ~P B /\ z e. { x | x ~~ C } ) <-> ( z C_ B /\ z ~~ C ) ) | 
						
							| 69 | 64 68 | bitri |  |-  ( z e. ( ~P B i^i { x | x ~~ C } ) <-> ( z C_ B /\ z ~~ C ) ) | 
						
							| 70 |  | elin |  |-  ( ( `' f " z ) e. ( ~P A i^i { x | x ~~ C } ) <-> ( ( `' f " z ) e. ~P A /\ ( `' f " z ) e. { x | x ~~ C } ) ) | 
						
							| 71 | 3 | cnvex |  |-  `' f e. _V | 
						
							| 72 | 71 | imaex |  |-  ( `' f " z ) e. _V | 
						
							| 73 | 72 | elpw |  |-  ( ( `' f " z ) e. ~P A <-> ( `' f " z ) C_ A ) | 
						
							| 74 |  | breq1 |  |-  ( x = ( `' f " z ) -> ( x ~~ C <-> ( `' f " z ) ~~ C ) ) | 
						
							| 75 | 72 74 | elab |  |-  ( ( `' f " z ) e. { x | x ~~ C } <-> ( `' f " z ) ~~ C ) | 
						
							| 76 | 73 75 | anbi12i |  |-  ( ( ( `' f " z ) e. ~P A /\ ( `' f " z ) e. { x | x ~~ C } ) <-> ( ( `' f " z ) C_ A /\ ( `' f " z ) ~~ C ) ) | 
						
							| 77 | 70 76 | bitri |  |-  ( ( `' f " z ) e. ( ~P A i^i { x | x ~~ C } ) <-> ( ( `' f " z ) C_ A /\ ( `' f " z ) ~~ C ) ) | 
						
							| 78 | 63 69 77 | 3imtr4g |  |-  ( f : A -1-1-onto-> B -> ( z e. ( ~P B i^i { x | x ~~ C } ) -> ( `' f " z ) e. ( ~P A i^i { x | x ~~ C } ) ) ) | 
						
							| 79 |  | simpl |  |-  ( ( z e. ~P B /\ z e. { x | x ~~ C } ) -> z e. ~P B ) | 
						
							| 80 | 79 | elpwid |  |-  ( ( z e. ~P B /\ z e. { x | x ~~ C } ) -> z C_ B ) | 
						
							| 81 | 64 80 | sylbi |  |-  ( z e. ( ~P B i^i { x | x ~~ C } ) -> z C_ B ) | 
						
							| 82 |  | imaeq2 |  |-  ( y = ( `' f " z ) -> ( f " y ) = ( f " ( `' f " z ) ) ) | 
						
							| 83 |  | f1orel |  |-  ( f : A -1-1-onto-> B -> Rel f ) | 
						
							| 84 |  | dfrel2 |  |-  ( Rel f <-> `' `' f = f ) | 
						
							| 85 | 83 84 | sylib |  |-  ( f : A -1-1-onto-> B -> `' `' f = f ) | 
						
							| 86 | 85 | imaeq1d |  |-  ( f : A -1-1-onto-> B -> ( `' `' f " ( `' f " z ) ) = ( f " ( `' f " z ) ) ) | 
						
							| 87 | 86 | adantr |  |-  ( ( f : A -1-1-onto-> B /\ z C_ B ) -> ( `' `' f " ( `' f " z ) ) = ( f " ( `' f " z ) ) ) | 
						
							| 88 | 46 47 | syl |  |-  ( f : A -1-1-onto-> B -> `' f : B -1-1-> A ) | 
						
							| 89 |  | f1imacnv |  |-  ( ( `' f : B -1-1-> A /\ z C_ B ) -> ( `' `' f " ( `' f " z ) ) = z ) | 
						
							| 90 | 88 89 | sylan |  |-  ( ( f : A -1-1-onto-> B /\ z C_ B ) -> ( `' `' f " ( `' f " z ) ) = z ) | 
						
							| 91 | 87 90 | eqtr3d |  |-  ( ( f : A -1-1-onto-> B /\ z C_ B ) -> ( f " ( `' f " z ) ) = z ) | 
						
							| 92 | 82 91 | sylan9eqr |  |-  ( ( ( f : A -1-1-onto-> B /\ z C_ B ) /\ y = ( `' f " z ) ) -> ( f " y ) = z ) | 
						
							| 93 | 92 | eqcomd |  |-  ( ( ( f : A -1-1-onto-> B /\ z C_ B ) /\ y = ( `' f " z ) ) -> z = ( f " y ) ) | 
						
							| 94 | 93 | ex |  |-  ( ( f : A -1-1-onto-> B /\ z C_ B ) -> ( y = ( `' f " z ) -> z = ( f " y ) ) ) | 
						
							| 95 | 81 94 | sylan2 |  |-  ( ( f : A -1-1-onto-> B /\ z e. ( ~P B i^i { x | x ~~ C } ) ) -> ( y = ( `' f " z ) -> z = ( f " y ) ) ) | 
						
							| 96 | 95 | adantrl |  |-  ( ( f : A -1-1-onto-> B /\ ( y e. ( ~P A i^i { x | x ~~ C } ) /\ z e. ( ~P B i^i { x | x ~~ C } ) ) ) -> ( y = ( `' f " z ) -> z = ( f " y ) ) ) | 
						
							| 97 |  | simpl |  |-  ( ( y e. ~P A /\ y e. { x | x ~~ C } ) -> y e. ~P A ) | 
						
							| 98 | 97 | elpwid |  |-  ( ( y e. ~P A /\ y e. { x | x ~~ C } ) -> y C_ A ) | 
						
							| 99 | 32 98 | sylbi |  |-  ( y e. ( ~P A i^i { x | x ~~ C } ) -> y C_ A ) | 
						
							| 100 |  | imaeq2 |  |-  ( z = ( f " y ) -> ( `' f " z ) = ( `' f " ( f " y ) ) ) | 
						
							| 101 |  | f1imacnv |  |-  ( ( f : A -1-1-> B /\ y C_ A ) -> ( `' f " ( f " y ) ) = y ) | 
						
							| 102 | 17 101 | sylan |  |-  ( ( f : A -1-1-onto-> B /\ y C_ A ) -> ( `' f " ( f " y ) ) = y ) | 
						
							| 103 | 100 102 | sylan9eqr |  |-  ( ( ( f : A -1-1-onto-> B /\ y C_ A ) /\ z = ( f " y ) ) -> ( `' f " z ) = y ) | 
						
							| 104 | 103 | eqcomd |  |-  ( ( ( f : A -1-1-onto-> B /\ y C_ A ) /\ z = ( f " y ) ) -> y = ( `' f " z ) ) | 
						
							| 105 | 104 | ex |  |-  ( ( f : A -1-1-onto-> B /\ y C_ A ) -> ( z = ( f " y ) -> y = ( `' f " z ) ) ) | 
						
							| 106 | 99 105 | sylan2 |  |-  ( ( f : A -1-1-onto-> B /\ y e. ( ~P A i^i { x | x ~~ C } ) ) -> ( z = ( f " y ) -> y = ( `' f " z ) ) ) | 
						
							| 107 | 106 | adantrr |  |-  ( ( f : A -1-1-onto-> B /\ ( y e. ( ~P A i^i { x | x ~~ C } ) /\ z e. ( ~P B i^i { x | x ~~ C } ) ) ) -> ( z = ( f " y ) -> y = ( `' f " z ) ) ) | 
						
							| 108 | 96 107 | impbid |  |-  ( ( f : A -1-1-onto-> B /\ ( y e. ( ~P A i^i { x | x ~~ C } ) /\ z e. ( ~P B i^i { x | x ~~ C } ) ) ) -> ( y = ( `' f " z ) <-> z = ( f " y ) ) ) | 
						
							| 109 | 108 | ex |  |-  ( f : A -1-1-onto-> B -> ( ( y e. ( ~P A i^i { x | x ~~ C } ) /\ z e. ( ~P B i^i { x | x ~~ C } ) ) -> ( y = ( `' f " z ) <-> z = ( f " y ) ) ) ) | 
						
							| 110 | 8 16 45 78 109 | en3d |  |-  ( f : A -1-1-onto-> B -> ( ~P A i^i { x | x ~~ C } ) ~~ ( ~P B i^i { x | x ~~ C } ) ) | 
						
							| 111 | 110 | exlimiv |  |-  ( E. f f : A -1-1-onto-> B -> ( ~P A i^i { x | x ~~ C } ) ~~ ( ~P B i^i { x | x ~~ C } ) ) | 
						
							| 112 | 1 111 | sylbi |  |-  ( A ~~ B -> ( ~P A i^i { x | x ~~ C } ) ~~ ( ~P B i^i { x | x ~~ C } ) ) | 
						
							| 113 |  | df-pw |  |-  ~P A = { x | x C_ A } | 
						
							| 114 | 113 | ineq1i |  |-  ( ~P A i^i { x | x ~~ C } ) = ( { x | x C_ A } i^i { x | x ~~ C } ) | 
						
							| 115 |  | inab |  |-  ( { x | x C_ A } i^i { x | x ~~ C } ) = { x | ( x C_ A /\ x ~~ C ) } | 
						
							| 116 | 114 115 | eqtri |  |-  ( ~P A i^i { x | x ~~ C } ) = { x | ( x C_ A /\ x ~~ C ) } | 
						
							| 117 |  | df-pw |  |-  ~P B = { x | x C_ B } | 
						
							| 118 | 117 | ineq1i |  |-  ( ~P B i^i { x | x ~~ C } ) = ( { x | x C_ B } i^i { x | x ~~ C } ) | 
						
							| 119 |  | inab |  |-  ( { x | x C_ B } i^i { x | x ~~ C } ) = { x | ( x C_ B /\ x ~~ C ) } | 
						
							| 120 | 118 119 | eqtri |  |-  ( ~P B i^i { x | x ~~ C } ) = { x | ( x C_ B /\ x ~~ C ) } | 
						
							| 121 | 112 116 120 | 3brtr3g |  |-  ( A ~~ B -> { x | ( x C_ A /\ x ~~ C ) } ~~ { x | ( x C_ B /\ x ~~ C ) } ) |