Description: Equality theorem for subclasses. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 21-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sseq1 | |- ( A = B -> ( A C_ C <-> B C_ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
| 2 | sstr2 | |- ( B C_ A -> ( A C_ C -> B C_ C ) ) |
|
| 3 | sstr2 | |- ( A C_ B -> ( B C_ C -> A C_ C ) ) |
|
| 4 | 2 3 | anbiim | |- ( ( B C_ A /\ A C_ B ) -> ( A C_ C <-> B C_ C ) ) |
| 5 | 4 | ancoms | |- ( ( A C_ B /\ B C_ A ) -> ( A C_ C <-> B C_ C ) ) |
| 6 | 1 5 | sylbi | |- ( A = B -> ( A C_ C <-> B C_ C ) ) |