Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | sseq12 | |- ( ( A = B /\ C = D ) -> ( A C_ C <-> B C_ D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 | |- ( A = B -> ( A C_ C <-> B C_ C ) ) |
|
2 | sseq2 | |- ( C = D -> ( B C_ C <-> B C_ D ) ) |
|
3 | 1 2 | sylan9bb | |- ( ( A = B /\ C = D ) -> ( A C_ C <-> B C_ D ) ) |