Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sseq1d.1 | |- ( ph -> A = B ) |
|
sseq12d.2 | |- ( ph -> C = D ) |
||
Assertion | sseq12d | |- ( ph -> ( A C_ C <-> B C_ D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | |- ( ph -> A = B ) |
|
2 | sseq12d.2 | |- ( ph -> C = D ) |
|
3 | 1 | sseq1d | |- ( ph -> ( A C_ C <-> B C_ C ) ) |
4 | 2 | sseq2d | |- ( ph -> ( B C_ C <-> B C_ D ) ) |
5 | 3 4 | bitrd | |- ( ph -> ( A C_ C <-> B C_ D ) ) |