Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999) (Proof shortened by Eric Schmidt, 26-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sseq1i.1 | |- A = B |
|
| sseq12i.2 | |- C = D |
||
| Assertion | sseq12i | |- ( A C_ C <-> B C_ D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | |- A = B |
|
| 2 | sseq12i.2 | |- C = D |
|
| 3 | sseq12 | |- ( ( A = B /\ C = D ) -> ( A C_ C <-> B C_ D ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( A C_ C <-> B C_ D ) |