Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sseq2 | |- ( A = B -> ( C C_ A <-> C C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
| 2 | sstr2 | |- ( C C_ A -> ( A C_ B -> C C_ B ) ) |
|
| 3 | 2 | com12 | |- ( A C_ B -> ( C C_ A -> C C_ B ) ) |
| 4 | sstr2 | |- ( C C_ B -> ( B C_ A -> C C_ A ) ) |
|
| 5 | 4 | com12 | |- ( B C_ A -> ( C C_ B -> C C_ A ) ) |
| 6 | 3 5 | anbiim | |- ( ( A C_ B /\ B C_ A ) -> ( C C_ A <-> C C_ B ) ) |
| 7 | 1 6 | sylbi | |- ( A = B -> ( C C_ A <-> C C_ B ) ) |