Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sseqtrd.1 | |- ( ph -> A C_ B ) |
|
| sseqtrd.2 | |- ( ph -> B = C ) |
||
| Assertion | sseqtrd | |- ( ph -> A C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrd.1 | |- ( ph -> A C_ B ) |
|
| 2 | sseqtrd.2 | |- ( ph -> B = C ) |
|
| 3 | 2 | sseq2d | |- ( ph -> ( A C_ B <-> A C_ C ) ) |
| 4 | 1 3 | mpbid | |- ( ph -> A C_ C ) |