Metamath Proof Explorer
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)
|
|
Ref |
Expression |
|
Hypotheses |
sseqtrdi.1 |
|- ( ph -> A C_ B ) |
|
|
sseqtrdi.2 |
|- B = C |
|
Assertion |
sseqtrdi |
|- ( ph -> A C_ C ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sseqtrdi.1 |
|- ( ph -> A C_ B ) |
2 |
|
sseqtrdi.2 |
|- B = C |
3 |
2
|
sseq2i |
|- ( A C_ B <-> A C_ C ) |
4 |
1 3
|
sylib |
|- ( ph -> A C_ C ) |