Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sseqtrid.1 | |- B C_ A |
|
sseqtrid.2 | |- ( ph -> A = C ) |
||
Assertion | sseqtrid | |- ( ph -> B C_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrid.1 | |- B C_ A |
|
2 | sseqtrid.2 | |- ( ph -> A = C ) |
|
3 | sseq2 | |- ( A = C -> ( B C_ A <-> B C_ C ) ) |
|
4 | 3 | biimpa | |- ( ( A = C /\ B C_ A ) -> B C_ C ) |
5 | 2 1 4 | sylancl | |- ( ph -> B C_ C ) |