Metamath Proof Explorer


Theorem sseqtrrdi

Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses sseqtrrdi.1
|- ( ph -> A C_ B )
sseqtrrdi.2
|- C = B
Assertion sseqtrrdi
|- ( ph -> A C_ C )

Proof

Step Hyp Ref Expression
1 sseqtrrdi.1
 |-  ( ph -> A C_ B )
2 sseqtrrdi.2
 |-  C = B
3 2 eqcomi
 |-  B = C
4 1 3 sseqtrdi
 |-  ( ph -> A C_ C )