Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssequn2 | |- ( A C_ B <-> ( B u. A ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 | |- ( A C_ B <-> ( A u. B ) = B ) |
|
| 2 | uncom | |- ( A u. B ) = ( B u. A ) |
|
| 3 | 2 | eqeq1i | |- ( ( A u. B ) = B <-> ( B u. A ) = B ) |
| 4 | 1 3 | bitri | |- ( A C_ B <-> ( B u. A ) = B ) |