Description: A subclass of a set is a set. Deduction form of ssexg . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssexd.1 | |- ( ph -> B e. C ) |
|
| ssexd.2 | |- ( ph -> A C_ B ) |
||
| Assertion | ssexd | |- ( ph -> A e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexd.1 | |- ( ph -> B e. C ) |
|
| 2 | ssexd.2 | |- ( ph -> A C_ B ) |
|
| 3 | ssexg | |- ( ( A C_ B /\ B e. C ) -> A e. _V ) |
|
| 4 | 2 1 3 | syl2anc | |- ( ph -> A e. _V ) |