Metamath Proof Explorer


Theorem ssexd

Description: A subclass of a set is a set. Deduction form of ssexg . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ssexd.1
|- ( ph -> B e. C )
ssexd.2
|- ( ph -> A C_ B )
Assertion ssexd
|- ( ph -> A e. _V )

Proof

Step Hyp Ref Expression
1 ssexd.1
 |-  ( ph -> B e. C )
2 ssexd.2
 |-  ( ph -> A C_ B )
3 ssexg
 |-  ( ( A C_ B /\ B e. C ) -> A e. _V )
4 2 1 3 syl2anc
 |-  ( ph -> A e. _V )