Description: The subset of a set is also a set. Exercise 3 of TakeutiZaring p. 22 (generalized). (Contributed by NM, 14-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | ssexg | |- ( ( A C_ B /\ B e. C ) -> A e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 | |- ( x = B -> ( A C_ x <-> A C_ B ) ) |
|
2 | 1 | imbi1d | |- ( x = B -> ( ( A C_ x -> A e. _V ) <-> ( A C_ B -> A e. _V ) ) ) |
3 | vex | |- x e. _V |
|
4 | 3 | ssex | |- ( A C_ x -> A e. _V ) |
5 | 2 4 | vtoclg | |- ( B e. C -> ( A C_ B -> A e. _V ) ) |
6 | 5 | impcom | |- ( ( A C_ B /\ B e. C ) -> A e. _V ) |