Metamath Proof Explorer


Theorem ssexnelpss

Description: If there is an element of a class which is not contained in a subclass, the subclass is a proper subclass. (Contributed by AV, 29-Jan-2020)

Ref Expression
Assertion ssexnelpss
|- ( ( A C_ B /\ E. x e. B x e/ A ) -> A C. B )

Proof

Step Hyp Ref Expression
1 df-nel
 |-  ( x e/ A <-> -. x e. A )
2 ssnelpss
 |-  ( A C_ B -> ( ( x e. B /\ -. x e. A ) -> A C. B ) )
3 2 expdimp
 |-  ( ( A C_ B /\ x e. B ) -> ( -. x e. A -> A C. B ) )
4 1 3 syl5bi
 |-  ( ( A C_ B /\ x e. B ) -> ( x e/ A -> A C. B ) )
5 4 rexlimdva
 |-  ( A C_ B -> ( E. x e. B x e/ A -> A C. B ) )
6 5 imp
 |-  ( ( A C_ B /\ E. x e. B x e/ A ) -> A C. B )