Metamath Proof Explorer


Theorem ssext

Description: An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004)

Ref Expression
Assertion ssext
|- ( A = B <-> A. x ( x C_ A <-> x C_ B ) )

Proof

Step Hyp Ref Expression
1 ssextss
 |-  ( A C_ B <-> A. x ( x C_ A -> x C_ B ) )
2 ssextss
 |-  ( B C_ A <-> A. x ( x C_ B -> x C_ A ) )
3 1 2 anbi12i
 |-  ( ( A C_ B /\ B C_ A ) <-> ( A. x ( x C_ A -> x C_ B ) /\ A. x ( x C_ B -> x C_ A ) ) )
4 eqss
 |-  ( A = B <-> ( A C_ B /\ B C_ A ) )
5 albiim
 |-  ( A. x ( x C_ A <-> x C_ B ) <-> ( A. x ( x C_ A -> x C_ B ) /\ A. x ( x C_ B -> x C_ A ) ) )
6 3 4 5 3bitr4i
 |-  ( A = B <-> A. x ( x C_ A <-> x C_ B ) )