Description: An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | ssext | |- ( A = B <-> A. x ( x C_ A <-> x C_ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssextss | |- ( A C_ B <-> A. x ( x C_ A -> x C_ B ) ) |
|
2 | ssextss | |- ( B C_ A <-> A. x ( x C_ B -> x C_ A ) ) |
|
3 | 1 2 | anbi12i | |- ( ( A C_ B /\ B C_ A ) <-> ( A. x ( x C_ A -> x C_ B ) /\ A. x ( x C_ B -> x C_ A ) ) ) |
4 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
5 | albiim | |- ( A. x ( x C_ A <-> x C_ B ) <-> ( A. x ( x C_ A -> x C_ B ) /\ A. x ( x C_ B -> x C_ A ) ) ) |
|
6 | 3 4 5 | 3bitr4i | |- ( A = B <-> A. x ( x C_ A <-> x C_ B ) ) |