Description: An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssextss | |- ( A C_ B <-> A. x ( x C_ A -> x C_ B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sspwb | |- ( A C_ B <-> ~P A C_ ~P B ) | |
| 2 | df-ss | |- ( ~P A C_ ~P B <-> A. x ( x e. ~P A -> x e. ~P B ) ) | |
| 3 | velpw | |- ( x e. ~P A <-> x C_ A ) | |
| 4 | velpw | |- ( x e. ~P B <-> x C_ B ) | |
| 5 | 3 4 | imbi12i | |- ( ( x e. ~P A -> x e. ~P B ) <-> ( x C_ A -> x C_ B ) ) | 
| 6 | 5 | albii | |- ( A. x ( x e. ~P A -> x e. ~P B ) <-> A. x ( x C_ A -> x C_ B ) ) | 
| 7 | 1 2 6 | 3bitri | |- ( A C_ B <-> A. x ( x C_ A -> x C_ B ) ) |