Step |
Hyp |
Ref |
Expression |
1 |
|
isfi |
|- ( A e. Fin <-> E. x e. _om A ~~ x ) |
2 |
|
bren |
|- ( A ~~ x <-> E. z z : A -1-1-onto-> x ) |
3 |
|
f1ofo |
|- ( z : A -1-1-onto-> x -> z : A -onto-> x ) |
4 |
|
imassrn |
|- ( z " B ) C_ ran z |
5 |
|
forn |
|- ( z : A -onto-> x -> ran z = x ) |
6 |
4 5
|
sseqtrid |
|- ( z : A -onto-> x -> ( z " B ) C_ x ) |
7 |
3 6
|
syl |
|- ( z : A -1-1-onto-> x -> ( z " B ) C_ x ) |
8 |
|
ssnnfi |
|- ( ( x e. _om /\ ( z " B ) C_ x ) -> ( z " B ) e. Fin ) |
9 |
|
isfi |
|- ( ( z " B ) e. Fin <-> E. y e. _om ( z " B ) ~~ y ) |
10 |
8 9
|
sylib |
|- ( ( x e. _om /\ ( z " B ) C_ x ) -> E. y e. _om ( z " B ) ~~ y ) |
11 |
7 10
|
sylan2 |
|- ( ( x e. _om /\ z : A -1-1-onto-> x ) -> E. y e. _om ( z " B ) ~~ y ) |
12 |
11
|
adantrr |
|- ( ( x e. _om /\ ( z : A -1-1-onto-> x /\ B C_ A ) ) -> E. y e. _om ( z " B ) ~~ y ) |
13 |
|
f1of1 |
|- ( z : A -1-1-onto-> x -> z : A -1-1-> x ) |
14 |
|
f1ores |
|- ( ( z : A -1-1-> x /\ B C_ A ) -> ( z |` B ) : B -1-1-onto-> ( z " B ) ) |
15 |
13 14
|
sylan |
|- ( ( z : A -1-1-onto-> x /\ B C_ A ) -> ( z |` B ) : B -1-1-onto-> ( z " B ) ) |
16 |
|
vex |
|- z e. _V |
17 |
16
|
resex |
|- ( z |` B ) e. _V |
18 |
|
f1oeq1 |
|- ( x = ( z |` B ) -> ( x : B -1-1-onto-> ( z " B ) <-> ( z |` B ) : B -1-1-onto-> ( z " B ) ) ) |
19 |
17 18
|
spcev |
|- ( ( z |` B ) : B -1-1-onto-> ( z " B ) -> E. x x : B -1-1-onto-> ( z " B ) ) |
20 |
|
bren |
|- ( B ~~ ( z " B ) <-> E. x x : B -1-1-onto-> ( z " B ) ) |
21 |
19 20
|
sylibr |
|- ( ( z |` B ) : B -1-1-onto-> ( z " B ) -> B ~~ ( z " B ) ) |
22 |
|
entr |
|- ( ( B ~~ ( z " B ) /\ ( z " B ) ~~ y ) -> B ~~ y ) |
23 |
21 22
|
sylan |
|- ( ( ( z |` B ) : B -1-1-onto-> ( z " B ) /\ ( z " B ) ~~ y ) -> B ~~ y ) |
24 |
15 23
|
sylan |
|- ( ( ( z : A -1-1-onto-> x /\ B C_ A ) /\ ( z " B ) ~~ y ) -> B ~~ y ) |
25 |
24
|
ex |
|- ( ( z : A -1-1-onto-> x /\ B C_ A ) -> ( ( z " B ) ~~ y -> B ~~ y ) ) |
26 |
25
|
reximdv |
|- ( ( z : A -1-1-onto-> x /\ B C_ A ) -> ( E. y e. _om ( z " B ) ~~ y -> E. y e. _om B ~~ y ) ) |
27 |
|
isfi |
|- ( B e. Fin <-> E. y e. _om B ~~ y ) |
28 |
26 27
|
syl6ibr |
|- ( ( z : A -1-1-onto-> x /\ B C_ A ) -> ( E. y e. _om ( z " B ) ~~ y -> B e. Fin ) ) |
29 |
28
|
adantl |
|- ( ( x e. _om /\ ( z : A -1-1-onto-> x /\ B C_ A ) ) -> ( E. y e. _om ( z " B ) ~~ y -> B e. Fin ) ) |
30 |
12 29
|
mpd |
|- ( ( x e. _om /\ ( z : A -1-1-onto-> x /\ B C_ A ) ) -> B e. Fin ) |
31 |
30
|
exp32 |
|- ( x e. _om -> ( z : A -1-1-onto-> x -> ( B C_ A -> B e. Fin ) ) ) |
32 |
31
|
exlimdv |
|- ( x e. _om -> ( E. z z : A -1-1-onto-> x -> ( B C_ A -> B e. Fin ) ) ) |
33 |
2 32
|
syl5bi |
|- ( x e. _om -> ( A ~~ x -> ( B C_ A -> B e. Fin ) ) ) |
34 |
33
|
rexlimiv |
|- ( E. x e. _om A ~~ x -> ( B C_ A -> B e. Fin ) ) |
35 |
1 34
|
sylbi |
|- ( A e. Fin -> ( B C_ A -> B e. Fin ) ) |
36 |
35
|
imp |
|- ( ( A e. Fin /\ B C_ A ) -> B e. Fin ) |