Metamath Proof Explorer


Theorem sshaus

Description: A topology finer than a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Hypothesis t1sep.1
|- X = U. J
Assertion sshaus
|- ( ( J e. Haus /\ K e. ( TopOn ` X ) /\ J C_ K ) -> K e. Haus )

Proof

Step Hyp Ref Expression
1 t1sep.1
 |-  X = U. J
2 haustop
 |-  ( J e. Haus -> J e. Top )
3 cnhaus
 |-  ( ( J e. Haus /\ ( _I |` X ) : X -1-1-> X /\ ( _I |` X ) e. ( K Cn J ) ) -> K e. Haus )
4 1 2 3 sshauslem
 |-  ( ( J e. Haus /\ K e. ( TopOn ` X ) /\ J C_ K ) -> K e. Haus )