Step |
Hyp |
Ref |
Expression |
1 |
|
sshjococ.1 |
|- A C_ ~H |
2 |
|
sshjococ.2 |
|- B C_ ~H |
3 |
|
ococss |
|- ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
4 |
1 3
|
ax-mp |
|- A C_ ( _|_ ` ( _|_ ` A ) ) |
5 |
|
ococss |
|- ( B C_ ~H -> B C_ ( _|_ ` ( _|_ ` B ) ) ) |
6 |
2 5
|
ax-mp |
|- B C_ ( _|_ ` ( _|_ ` B ) ) |
7 |
|
unss12 |
|- ( ( A C_ ( _|_ ` ( _|_ ` A ) ) /\ B C_ ( _|_ ` ( _|_ ` B ) ) ) -> ( A u. B ) C_ ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) ) |
8 |
4 6 7
|
mp2an |
|- ( A u. B ) C_ ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) |
9 |
1 2
|
unssi |
|- ( A u. B ) C_ ~H |
10 |
|
occl |
|- ( A C_ ~H -> ( _|_ ` A ) e. CH ) |
11 |
1 10
|
ax-mp |
|- ( _|_ ` A ) e. CH |
12 |
11
|
choccli |
|- ( _|_ ` ( _|_ ` A ) ) e. CH |
13 |
12
|
chssii |
|- ( _|_ ` ( _|_ ` A ) ) C_ ~H |
14 |
|
occl |
|- ( B C_ ~H -> ( _|_ ` B ) e. CH ) |
15 |
2 14
|
ax-mp |
|- ( _|_ ` B ) e. CH |
16 |
15
|
choccli |
|- ( _|_ ` ( _|_ ` B ) ) e. CH |
17 |
16
|
chssii |
|- ( _|_ ` ( _|_ ` B ) ) C_ ~H |
18 |
13 17
|
unssi |
|- ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) C_ ~H |
19 |
9 18
|
occon2i |
|- ( ( A u. B ) C_ ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) ) ) ) |
20 |
8 19
|
ax-mp |
|- ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) ) ) |
21 |
|
sshjval |
|- ( ( A C_ ~H /\ B C_ ~H ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
22 |
1 2 21
|
mp2an |
|- ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) |
23 |
12 16
|
chjvali |
|- ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` ( _|_ ` B ) ) ) = ( _|_ ` ( _|_ ` ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) ) ) |
24 |
20 22 23
|
3sstr4i |
|- ( A vH B ) C_ ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` ( _|_ ` B ) ) ) |
25 |
|
ssun1 |
|- A C_ ( A u. B ) |
26 |
|
ococss |
|- ( ( A u. B ) C_ ~H -> ( A u. B ) C_ ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
27 |
9 26
|
ax-mp |
|- ( A u. B ) C_ ( _|_ ` ( _|_ ` ( A u. B ) ) ) |
28 |
25 27
|
sstri |
|- A C_ ( _|_ ` ( _|_ ` ( A u. B ) ) ) |
29 |
28 22
|
sseqtrri |
|- A C_ ( A vH B ) |
30 |
|
sshjcl |
|- ( ( A C_ ~H /\ B C_ ~H ) -> ( A vH B ) e. CH ) |
31 |
1 2 30
|
mp2an |
|- ( A vH B ) e. CH |
32 |
31
|
chssii |
|- ( A vH B ) C_ ~H |
33 |
1 32
|
occon2i |
|- ( A C_ ( A vH B ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) ) |
34 |
29 33
|
ax-mp |
|- ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) |
35 |
|
ssun2 |
|- B C_ ( A u. B ) |
36 |
35 27
|
sstri |
|- B C_ ( _|_ ` ( _|_ ` ( A u. B ) ) ) |
37 |
36 22
|
sseqtrri |
|- B C_ ( A vH B ) |
38 |
2 32
|
occon2i |
|- ( B C_ ( A vH B ) -> ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) ) |
39 |
37 38
|
ax-mp |
|- ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) |
40 |
31
|
choccli |
|- ( _|_ ` ( A vH B ) ) e. CH |
41 |
40
|
choccli |
|- ( _|_ ` ( _|_ ` ( A vH B ) ) ) e. CH |
42 |
12 16 41
|
chlubii |
|- ( ( ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) /\ ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) ) -> ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` ( _|_ ` B ) ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) ) |
43 |
34 39 42
|
mp2an |
|- ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` ( _|_ ` B ) ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) |
44 |
31
|
ococi |
|- ( _|_ ` ( _|_ ` ( A vH B ) ) ) = ( A vH B ) |
45 |
43 44
|
sseqtri |
|- ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` ( _|_ ` B ) ) ) C_ ( A vH B ) |
46 |
24 45
|
eqssi |
|- ( A vH B ) = ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` ( _|_ ` B ) ) ) |