| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-hilex |
|- ~H e. _V |
| 2 |
1
|
elpw2 |
|- ( A e. ~P ~H <-> A C_ ~H ) |
| 3 |
1
|
elpw2 |
|- ( B e. ~P ~H <-> B C_ ~H ) |
| 4 |
|
uneq12 |
|- ( ( x = A /\ y = B ) -> ( x u. y ) = ( A u. B ) ) |
| 5 |
4
|
fveq2d |
|- ( ( x = A /\ y = B ) -> ( _|_ ` ( x u. y ) ) = ( _|_ ` ( A u. B ) ) ) |
| 6 |
5
|
fveq2d |
|- ( ( x = A /\ y = B ) -> ( _|_ ` ( _|_ ` ( x u. y ) ) ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
| 7 |
|
df-chj |
|- vH = ( x e. ~P ~H , y e. ~P ~H |-> ( _|_ ` ( _|_ ` ( x u. y ) ) ) ) |
| 8 |
|
fvex |
|- ( _|_ ` ( _|_ ` ( A u. B ) ) ) e. _V |
| 9 |
6 7 8
|
ovmpoa |
|- ( ( A e. ~P ~H /\ B e. ~P ~H ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
| 10 |
2 3 9
|
syl2anbr |
|- ( ( A C_ ~H /\ B C_ ~H ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |