| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hilex |  |-  ~H e. _V | 
						
							| 2 | 1 | elpw2 |  |-  ( A e. ~P ~H <-> A C_ ~H ) | 
						
							| 3 | 1 | elpw2 |  |-  ( B e. ~P ~H <-> B C_ ~H ) | 
						
							| 4 |  | uniprg |  |-  ( ( A e. ~P ~H /\ B e. ~P ~H ) -> U. { A , B } = ( A u. B ) ) | 
						
							| 5 | 2 3 4 | syl2anbr |  |-  ( ( A C_ ~H /\ B C_ ~H ) -> U. { A , B } = ( A u. B ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( ( A C_ ~H /\ B C_ ~H ) -> ( _|_ ` U. { A , B } ) = ( _|_ ` ( A u. B ) ) ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ( A C_ ~H /\ B C_ ~H ) -> ( _|_ ` ( _|_ ` U. { A , B } ) ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) | 
						
							| 8 |  | prssi |  |-  ( ( A e. ~P ~H /\ B e. ~P ~H ) -> { A , B } C_ ~P ~H ) | 
						
							| 9 | 2 3 8 | syl2anbr |  |-  ( ( A C_ ~H /\ B C_ ~H ) -> { A , B } C_ ~P ~H ) | 
						
							| 10 |  | hsupval |  |-  ( { A , B } C_ ~P ~H -> ( \/H ` { A , B } ) = ( _|_ ` ( _|_ ` U. { A , B } ) ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( A C_ ~H /\ B C_ ~H ) -> ( \/H ` { A , B } ) = ( _|_ ` ( _|_ ` U. { A , B } ) ) ) | 
						
							| 12 |  | sshjval |  |-  ( ( A C_ ~H /\ B C_ ~H ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) | 
						
							| 13 | 7 11 12 | 3eqtr4rd |  |-  ( ( A C_ ~H /\ B C_ ~H ) -> ( A vH B ) = ( \/H ` { A , B } ) ) |