| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imaeq2 |
|- ( y = A -> ( F " y ) = ( F " A ) ) |
| 2 |
1
|
sseq2d |
|- ( y = A -> ( B C_ ( F " y ) <-> B C_ ( F " A ) ) ) |
| 3 |
2
|
anbi2d |
|- ( y = A -> ( ( Fun F /\ B C_ ( F " y ) ) <-> ( Fun F /\ B C_ ( F " A ) ) ) ) |
| 4 |
|
sseq2 |
|- ( y = A -> ( x C_ y <-> x C_ A ) ) |
| 5 |
4
|
anbi1d |
|- ( y = A -> ( ( x C_ y /\ B = ( F " x ) ) <-> ( x C_ A /\ B = ( F " x ) ) ) ) |
| 6 |
5
|
exbidv |
|- ( y = A -> ( E. x ( x C_ y /\ B = ( F " x ) ) <-> E. x ( x C_ A /\ B = ( F " x ) ) ) ) |
| 7 |
3 6
|
imbi12d |
|- ( y = A -> ( ( ( Fun F /\ B C_ ( F " y ) ) -> E. x ( x C_ y /\ B = ( F " x ) ) ) <-> ( ( Fun F /\ B C_ ( F " A ) ) -> E. x ( x C_ A /\ B = ( F " x ) ) ) ) ) |
| 8 |
|
vex |
|- y e. _V |
| 9 |
8
|
ssimaex |
|- ( ( Fun F /\ B C_ ( F " y ) ) -> E. x ( x C_ y /\ B = ( F " x ) ) ) |
| 10 |
7 9
|
vtoclg |
|- ( A e. C -> ( ( Fun F /\ B C_ ( F " A ) ) -> E. x ( x C_ A /\ B = ( F " x ) ) ) ) |
| 11 |
10
|
3impib |
|- ( ( A e. C /\ Fun F /\ B C_ ( F " A ) ) -> E. x ( x C_ A /\ B = ( F " x ) ) ) |