| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssinc.1 | 
							 |-  ( ph -> N e. ( ZZ>= ` M ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ssinc.2 | 
							 |-  ( ( ph /\ m e. ( M ..^ N ) ) -> ( F ` m ) C_ ( F ` ( m + 1 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eluzel2 | 
							 |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							syl | 
							 |-  ( ph -> M e. ZZ )  | 
						
						
							| 5 | 
							
								
							 | 
							eluzelz | 
							 |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							syl | 
							 |-  ( ph -> N e. ZZ )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							jca | 
							 |-  ( ph -> ( M e. ZZ /\ N e. ZZ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eluzle | 
							 |-  ( N e. ( ZZ>= ` M ) -> M <_ N )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							syl | 
							 |-  ( ph -> M <_ N )  | 
						
						
							| 10 | 
							
								6
							 | 
							zred | 
							 |-  ( ph -> N e. RR )  | 
						
						
							| 11 | 
							
								10
							 | 
							leidd | 
							 |-  ( ph -> N <_ N )  | 
						
						
							| 12 | 
							
								6 9 11
							 | 
							3jca | 
							 |-  ( ph -> ( N e. ZZ /\ M <_ N /\ N <_ N ) )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							jca | 
							 |-  ( ph -> ( ( M e. ZZ /\ N e. ZZ ) /\ ( N e. ZZ /\ M <_ N /\ N <_ N ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							id | 
							 |-  ( ph -> ph )  | 
						
						
							| 15 | 
							
								
							 | 
							fveq2 | 
							 |-  ( n = M -> ( F ` n ) = ( F ` M ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							sseq2d | 
							 |-  ( n = M -> ( ( F ` M ) C_ ( F ` n ) <-> ( F ` M ) C_ ( F ` M ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							imbi2d | 
							 |-  ( n = M -> ( ( ph -> ( F ` M ) C_ ( F ` n ) ) <-> ( ph -> ( F ` M ) C_ ( F ` M ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fveq2 | 
							 |-  ( n = m -> ( F ` n ) = ( F ` m ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							sseq2d | 
							 |-  ( n = m -> ( ( F ` M ) C_ ( F ` n ) <-> ( F ` M ) C_ ( F ` m ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							imbi2d | 
							 |-  ( n = m -> ( ( ph -> ( F ` M ) C_ ( F ` n ) ) <-> ( ph -> ( F ` M ) C_ ( F ` m ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							fveq2 | 
							 |-  ( n = ( m + 1 ) -> ( F ` n ) = ( F ` ( m + 1 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							sseq2d | 
							 |-  ( n = ( m + 1 ) -> ( ( F ` M ) C_ ( F ` n ) <-> ( F ` M ) C_ ( F ` ( m + 1 ) ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							imbi2d | 
							 |-  ( n = ( m + 1 ) -> ( ( ph -> ( F ` M ) C_ ( F ` n ) ) <-> ( ph -> ( F ` M ) C_ ( F ` ( m + 1 ) ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							fveq2 | 
							 |-  ( n = N -> ( F ` n ) = ( F ` N ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							sseq2d | 
							 |-  ( n = N -> ( ( F ` M ) C_ ( F ` n ) <-> ( F ` M ) C_ ( F ` N ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							imbi2d | 
							 |-  ( n = N -> ( ( ph -> ( F ` M ) C_ ( F ` n ) ) <-> ( ph -> ( F ` M ) C_ ( F ` N ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							ssidd | 
							 |-  ( ph -> ( F ` M ) C_ ( F ` M ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							a1i | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( ph -> ( F ` M ) C_ ( F ` M ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph -> ( F ` M ) C_ ( F ` m ) ) /\ ph ) -> ph )  | 
						
						
							| 30 | 
							
								
							 | 
							simpl | 
							 |-  ( ( ( ph -> ( F ` M ) C_ ( F ` m ) ) /\ ph ) -> ( ph -> ( F ` M ) C_ ( F ` m ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							pm3.35 | 
							 |-  ( ( ph /\ ( ph -> ( F ` M ) C_ ( F ` m ) ) ) -> ( F ` M ) C_ ( F ` m ) )  | 
						
						
							| 32 | 
							
								29 30 31
							 | 
							syl2anc | 
							 |-  ( ( ( ph -> ( F ` M ) C_ ( F ` m ) ) /\ ph ) -> ( F ` M ) C_ ( F ` m ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							3adant1 | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ( ph -> ( F ` M ) C_ ( F ` m ) ) /\ ph ) -> ( F ` M ) C_ ( F ` m ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> ph )  | 
						
						
							| 35 | 
							
								
							 | 
							simplll | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> M e. ZZ )  | 
						
						
							| 36 | 
							
								
							 | 
							simplr1 | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> m e. ZZ )  | 
						
						
							| 37 | 
							
								
							 | 
							simplr2 | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> M <_ m )  | 
						
						
							| 38 | 
							
								35 36 37
							 | 
							3jca | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> ( M e. ZZ /\ m e. ZZ /\ M <_ m ) )  | 
						
						
							| 39 | 
							
								
							 | 
							eluz2 | 
							 |-  ( m e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ m e. ZZ /\ M <_ m ) )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							sylibr | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> m e. ( ZZ>= ` M ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> N e. ZZ )  | 
						
						
							| 42 | 
							
								
							 | 
							simplr3 | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> m < N )  | 
						
						
							| 43 | 
							
								40 41 42
							 | 
							3jca | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> ( m e. ( ZZ>= ` M ) /\ N e. ZZ /\ m < N ) )  | 
						
						
							| 44 | 
							
								
							 | 
							elfzo2 | 
							 |-  ( m e. ( M ..^ N ) <-> ( m e. ( ZZ>= ` M ) /\ N e. ZZ /\ m < N ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							sylibr | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> m e. ( M ..^ N ) )  | 
						
						
							| 46 | 
							
								34 45 2
							 | 
							syl2anc | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ph ) -> ( F ` m ) C_ ( F ` ( m + 1 ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							3adant2 | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ( ph -> ( F ` M ) C_ ( F ` m ) ) /\ ph ) -> ( F ` m ) C_ ( F ` ( m + 1 ) ) )  | 
						
						
							| 48 | 
							
								33 47
							 | 
							sstrd | 
							 |-  ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) /\ ( ph -> ( F ` M ) C_ ( F ` m ) ) /\ ph ) -> ( F ` M ) C_ ( F ` ( m + 1 ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							3exp | 
							 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( m e. ZZ /\ M <_ m /\ m < N ) ) -> ( ( ph -> ( F ` M ) C_ ( F ` m ) ) -> ( ph -> ( F ` M ) C_ ( F ` ( m + 1 ) ) ) ) )  | 
						
						
							| 50 | 
							
								17 20 23 26 28 49
							 | 
							fzind | 
							 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( N e. ZZ /\ M <_ N /\ N <_ N ) ) -> ( ph -> ( F ` M ) C_ ( F ` N ) ) )  | 
						
						
							| 51 | 
							
								13 14 50
							 | 
							sylc | 
							 |-  ( ph -> ( F ` M ) C_ ( F ` N ) )  |