Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | ssindif0 | |- ( A C_ B <-> ( A i^i ( _V \ B ) ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj2 | |- ( ( A i^i ( _V \ B ) ) = (/) <-> A C_ ( _V \ ( _V \ B ) ) ) |
|
2 | ddif | |- ( _V \ ( _V \ B ) ) = B |
|
3 | 2 | sseq2i | |- ( A C_ ( _V \ ( _V \ B ) ) <-> A C_ B ) |
4 | 1 3 | bitr2i | |- ( A C_ B <-> ( A i^i ( _V \ B ) ) = (/) ) |