Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006) (Proof shortened by Andrew Salmon, 9-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ssintab | |- ( A C_ |^| { x | ph } <-> A. x ( ph -> A C_ x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint | |- ( A C_ |^| { x | ph } <-> A. y e. { x | ph } A C_ y ) |
|
2 | sseq2 | |- ( y = x -> ( A C_ y <-> A C_ x ) ) |
|
3 | 2 | ralab2 | |- ( A. y e. { x | ph } A C_ y <-> A. x ( ph -> A C_ x ) ) |
4 | 1 3 | bitri | |- ( A C_ |^| { x | ph } <-> A. x ( ph -> A C_ x ) ) |