Step |
Hyp |
Ref |
Expression |
1 |
|
df-rab |
|- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
2 |
1
|
inteqi |
|- |^| { x e. B | ph } = |^| { x | ( x e. B /\ ph ) } |
3 |
2
|
sseq2i |
|- ( A C_ |^| { x e. B | ph } <-> A C_ |^| { x | ( x e. B /\ ph ) } ) |
4 |
|
impexp |
|- ( ( ( x e. B /\ ph ) -> A C_ x ) <-> ( x e. B -> ( ph -> A C_ x ) ) ) |
5 |
4
|
albii |
|- ( A. x ( ( x e. B /\ ph ) -> A C_ x ) <-> A. x ( x e. B -> ( ph -> A C_ x ) ) ) |
6 |
|
ssintab |
|- ( A C_ |^| { x | ( x e. B /\ ph ) } <-> A. x ( ( x e. B /\ ph ) -> A C_ x ) ) |
7 |
|
df-ral |
|- ( A. x e. B ( ph -> A C_ x ) <-> A. x ( x e. B -> ( ph -> A C_ x ) ) ) |
8 |
5 6 7
|
3bitr4i |
|- ( A C_ |^| { x | ( x e. B /\ ph ) } <-> A. x e. B ( ph -> A C_ x ) ) |
9 |
3 8
|
bitri |
|- ( A C_ |^| { x e. B | ph } <-> A. x e. B ( ph -> A C_ x ) ) |