Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssintub | |- A C_ |^| { x e. B | A C_ x } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint | |- ( A C_ |^| { x e. B | A C_ x } <-> A. y e. { x e. B | A C_ x } A C_ y ) |
|
| 2 | sseq2 | |- ( x = y -> ( A C_ x <-> A C_ y ) ) |
|
| 3 | 2 | elrab | |- ( y e. { x e. B | A C_ x } <-> ( y e. B /\ A C_ y ) ) |
| 4 | 3 | simprbi | |- ( y e. { x e. B | A C_ x } -> A C_ y ) |
| 5 | 1 4 | mprgbir | |- A C_ |^| { x e. B | A C_ x } |