Metamath Proof Explorer


Theorem ssipeq

Description: The inner product on a subspace equals the inner product on the parent space. (Contributed by AV, 19-Oct-2021)

Ref Expression
Hypotheses ssipeq.x
|- X = ( W |`s U )
ssipeq.i
|- ., = ( .i ` W )
ssipeq.p
|- P = ( .i ` X )
Assertion ssipeq
|- ( U e. S -> P = ., )

Proof

Step Hyp Ref Expression
1 ssipeq.x
 |-  X = ( W |`s U )
2 ssipeq.i
 |-  ., = ( .i ` W )
3 ssipeq.p
 |-  P = ( .i ` X )
4 1 2 ressip
 |-  ( U e. S -> ., = ( .i ` X ) )
5 3 4 eqtr4id
 |-  ( U e. S -> P = ., )