Description: The inner product on a subspace equals the inner product on the parent space. (Contributed by AV, 19-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssipeq.x | |- X = ( W |`s U ) |
|
ssipeq.i | |- ., = ( .i ` W ) |
||
ssipeq.p | |- P = ( .i ` X ) |
||
Assertion | ssipeq | |- ( U e. S -> P = ., ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssipeq.x | |- X = ( W |`s U ) |
|
2 | ssipeq.i | |- ., = ( .i ` W ) |
|
3 | ssipeq.p | |- P = ( .i ` X ) |
|
4 | 1 2 | ressip | |- ( U e. S -> ., = ( .i ` X ) ) |
5 | 3 4 | eqtr4id | |- ( U e. S -> P = ., ) |