Step |
Hyp |
Ref |
Expression |
1 |
|
ssltmul1.1 |
|- ( ph -> L < |
2 |
|
ssltmul1.2 |
|- ( ph -> M < |
3 |
|
ssltmul1.3 |
|- ( ph -> A = ( L |s R ) ) |
4 |
|
ssltmul1.4 |
|- ( ph -> B = ( M |s S ) ) |
5 |
|
eqid |
|- ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) |
6 |
5
|
rnmpo |
|- ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } |
7 |
|
ssltex1 |
|- ( L < L e. _V ) |
8 |
1 7
|
syl |
|- ( ph -> L e. _V ) |
9 |
|
ssltex1 |
|- ( M < M e. _V ) |
10 |
2 9
|
syl |
|- ( ph -> M e. _V ) |
11 |
5
|
mpoexg |
|- ( ( L e. _V /\ M e. _V ) -> ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) |
12 |
8 10 11
|
syl2anc |
|- ( ph -> ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) |
13 |
|
rnexg |
|- ( ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V -> ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) |
14 |
12 13
|
syl |
|- ( ph -> ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) |
15 |
6 14
|
eqeltrrid |
|- ( ph -> { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } e. _V ) |
16 |
|
eqid |
|- ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) |
17 |
16
|
rnmpo |
|- ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } |
18 |
|
ssltex2 |
|- ( L < R e. _V ) |
19 |
1 18
|
syl |
|- ( ph -> R e. _V ) |
20 |
|
ssltex2 |
|- ( M < S e. _V ) |
21 |
2 20
|
syl |
|- ( ph -> S e. _V ) |
22 |
16
|
mpoexg |
|- ( ( R e. _V /\ S e. _V ) -> ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) |
23 |
19 21 22
|
syl2anc |
|- ( ph -> ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) |
24 |
|
rnexg |
|- ( ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V -> ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) |
25 |
23 24
|
syl |
|- ( ph -> ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) |
26 |
17 25
|
eqeltrrid |
|- ( ph -> { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } e. _V ) |
27 |
15 26
|
unexd |
|- ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) e. _V ) |
28 |
|
snex |
|- { ( A x.s B ) } e. _V |
29 |
28
|
a1i |
|- ( ph -> { ( A x.s B ) } e. _V ) |
30 |
|
ssltss1 |
|- ( L < L C_ No ) |
31 |
1 30
|
syl |
|- ( ph -> L C_ No ) |
32 |
31
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> L C_ No ) |
33 |
|
simprl |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> p e. L ) |
34 |
32 33
|
sseldd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> p e. No ) |
35 |
2
|
scutcld |
|- ( ph -> ( M |s S ) e. No ) |
36 |
4 35
|
eqeltrd |
|- ( ph -> B e. No ) |
37 |
36
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> B e. No ) |
38 |
34 37
|
mulscld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s B ) e. No ) |
39 |
1
|
scutcld |
|- ( ph -> ( L |s R ) e. No ) |
40 |
3 39
|
eqeltrd |
|- ( ph -> A e. No ) |
41 |
40
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> A e. No ) |
42 |
|
ssltss1 |
|- ( M < M C_ No ) |
43 |
2 42
|
syl |
|- ( ph -> M C_ No ) |
44 |
43
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> M C_ No ) |
45 |
|
simprr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> q e. M ) |
46 |
44 45
|
sseldd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> q e. No ) |
47 |
41 46
|
mulscld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s q ) e. No ) |
48 |
38 47
|
addscld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) +s ( A x.s q ) ) e. No ) |
49 |
34 46
|
mulscld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s q ) e. No ) |
50 |
48 49
|
subscld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No ) |
51 |
|
eleq1 |
|- ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( a e. No <-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No ) ) |
52 |
50 51
|
syl5ibrcom |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> a e. No ) ) |
53 |
52
|
rexlimdvva |
|- ( ph -> ( E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> a e. No ) ) |
54 |
53
|
abssdv |
|- ( ph -> { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } C_ No ) |
55 |
|
ssltss2 |
|- ( L < R C_ No ) |
56 |
1 55
|
syl |
|- ( ph -> R C_ No ) |
57 |
56
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> R C_ No ) |
58 |
|
simprl |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> r e. R ) |
59 |
57 58
|
sseldd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> r e. No ) |
60 |
36
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> B e. No ) |
61 |
59 60
|
mulscld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s B ) e. No ) |
62 |
40
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> A e. No ) |
63 |
|
ssltss2 |
|- ( M < S C_ No ) |
64 |
2 63
|
syl |
|- ( ph -> S C_ No ) |
65 |
64
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> S C_ No ) |
66 |
|
simprr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> s e. S ) |
67 |
65 66
|
sseldd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> s e. No ) |
68 |
62 67
|
mulscld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s s ) e. No ) |
69 |
61 68
|
addscld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) +s ( A x.s s ) ) e. No ) |
70 |
59 67
|
mulscld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s s ) e. No ) |
71 |
69 70
|
subscld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No ) |
72 |
|
eleq1 |
|- ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( b e. No <-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No ) ) |
73 |
71 72
|
syl5ibrcom |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> b e. No ) ) |
74 |
73
|
rexlimdvva |
|- ( ph -> ( E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> b e. No ) ) |
75 |
74
|
abssdv |
|- ( ph -> { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } C_ No ) |
76 |
54 75
|
unssd |
|- ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) C_ No ) |
77 |
40 36
|
mulscld |
|- ( ph -> ( A x.s B ) e. No ) |
78 |
77
|
snssd |
|- ( ph -> { ( A x.s B ) } C_ No ) |
79 |
|
elun |
|- ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) |
80 |
|
vex |
|- x e. _V |
81 |
|
eqeq1 |
|- ( a = x -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) |
82 |
81
|
2rexbidv |
|- ( a = x -> ( E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) |
83 |
80 82
|
elab |
|- ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } <-> E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) |
84 |
|
eqeq1 |
|- ( b = x -> ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
85 |
84
|
2rexbidv |
|- ( b = x -> ( E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
86 |
80 85
|
elab |
|- ( x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } <-> E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) |
87 |
83 86
|
orbi12i |
|- ( ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
88 |
79 87
|
bitri |
|- ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
89 |
38 47 49
|
addsubsd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) = ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) ) |
90 |
|
scutcut |
|- ( L < ( ( L |s R ) e. No /\ L < |
91 |
1 90
|
syl |
|- ( ph -> ( ( L |s R ) e. No /\ L < |
92 |
91
|
simp2d |
|- ( ph -> L < |
93 |
92
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> L < |
94 |
|
ovex |
|- ( L |s R ) e. _V |
95 |
94
|
snid |
|- ( L |s R ) e. { ( L |s R ) } |
96 |
3 95
|
eqeltrdi |
|- ( ph -> A e. { ( L |s R ) } ) |
97 |
96
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> A e. { ( L |s R ) } ) |
98 |
93 33 97
|
ssltsepcd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> p |
99 |
|
scutcut |
|- ( M < ( ( M |s S ) e. No /\ M < |
100 |
2 99
|
syl |
|- ( ph -> ( ( M |s S ) e. No /\ M < |
101 |
100
|
simp2d |
|- ( ph -> M < |
102 |
101
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> M < |
103 |
|
ovex |
|- ( M |s S ) e. _V |
104 |
103
|
snid |
|- ( M |s S ) e. { ( M |s S ) } |
105 |
4 104
|
eqeltrdi |
|- ( ph -> B e. { ( M |s S ) } ) |
106 |
105
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> B e. { ( M |s S ) } ) |
107 |
102 45 106
|
ssltsepcd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> q |
108 |
34 41 46 37 98 107
|
sltmuld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) -s ( p x.s q ) ) |
109 |
38 49
|
subscld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) -s ( p x.s q ) ) e. No ) |
110 |
77
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s B ) e. No ) |
111 |
109 47 110
|
sltaddsubd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) ( ( p x.s B ) -s ( p x.s q ) ) |
112 |
108 111
|
mpbird |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) |
113 |
89 112
|
eqbrtrd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
114 |
|
breq1 |
|- ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( x ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
115 |
113 114
|
syl5ibrcom |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> x |
116 |
115
|
rexlimdvva |
|- ( ph -> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> x |
117 |
61 68 70
|
addsubsd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) = ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ) |
118 |
1
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> L < |
119 |
118 90
|
syl |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( L |s R ) e. No /\ L < |
120 |
119
|
simp3d |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> { ( L |s R ) } < |
121 |
3
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> A = ( L |s R ) ) |
122 |
121 95
|
eqeltrdi |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> A e. { ( L |s R ) } ) |
123 |
120 122 58
|
ssltsepcd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> A |
124 |
2
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> M < |
125 |
124 99
|
syl |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( M |s S ) e. No /\ M < |
126 |
125
|
simp3d |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> { ( M |s S ) } < |
127 |
4
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> B = ( M |s S ) ) |
128 |
127 104
|
eqeltrdi |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> B e. { ( M |s S ) } ) |
129 |
126 128 66
|
ssltsepcd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> B |
130 |
62 59 60 67 123 129
|
sltmuld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( A x.s s ) -s ( A x.s B ) ) |
131 |
61 70
|
subscld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) -s ( r x.s s ) ) e. No ) |
132 |
77
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s B ) e. No ) |
133 |
131 68 132
|
sltaddsubd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ( ( r x.s B ) -s ( r x.s s ) ) |
134 |
61 70 132 68
|
sltsubsub2bd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) -s ( r x.s s ) ) ( ( A x.s s ) -s ( A x.s B ) ) |
135 |
133 134
|
bitrd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ( ( A x.s s ) -s ( A x.s B ) ) |
136 |
130 135
|
mpbird |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) |
137 |
117 136
|
eqbrtrd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
138 |
|
breq1 |
|- ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( x ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
139 |
137 138
|
syl5ibrcom |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> x |
140 |
139
|
rexlimdvva |
|- ( ph -> ( E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> x |
141 |
116 140
|
jaod |
|- ( ph -> ( ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) -> x |
142 |
88 141
|
biimtrid |
|- ( ph -> ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) -> x |
143 |
142
|
imp |
|- ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) -> x |
144 |
|
velsn |
|- ( y e. { ( A x.s B ) } <-> y = ( A x.s B ) ) |
145 |
|
breq2 |
|- ( y = ( A x.s B ) -> ( x x |
146 |
144 145
|
sylbi |
|- ( y e. { ( A x.s B ) } -> ( x x |
147 |
143 146
|
syl5ibrcom |
|- ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) -> ( y e. { ( A x.s B ) } -> x |
148 |
147
|
3impia |
|- ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) /\ y e. { ( A x.s B ) } ) -> x |
149 |
27 29 76 78 148
|
ssltd |
|- ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) < |