Metamath Proof Explorer


Theorem ssltmul1

Description: One surreal set less-than relationship for cuts of A and B . (Contributed by Scott Fenton, 7-Mar-2025)

Ref Expression
Hypotheses ssltmul1.1
|- ( ph -> L <
ssltmul1.2
|- ( ph -> M <
ssltmul1.3
|- ( ph -> A = ( L |s R ) )
ssltmul1.4
|- ( ph -> B = ( M |s S ) )
Assertion ssltmul1
|- ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <

Proof

Step Hyp Ref Expression
1 ssltmul1.1
 |-  ( ph -> L <
2 ssltmul1.2
 |-  ( ph -> M <
3 ssltmul1.3
 |-  ( ph -> A = ( L |s R ) )
4 ssltmul1.4
 |-  ( ph -> B = ( M |s S ) )
5 eqid
 |-  ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) )
6 5 rnmpo
 |-  ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) }
7 ssltex1
 |-  ( L < L e. _V )
8 1 7 syl
 |-  ( ph -> L e. _V )
9 ssltex1
 |-  ( M < M e. _V )
10 2 9 syl
 |-  ( ph -> M e. _V )
11 5 mpoexg
 |-  ( ( L e. _V /\ M e. _V ) -> ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V )
12 8 10 11 syl2anc
 |-  ( ph -> ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V )
13 rnexg
 |-  ( ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V -> ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V )
14 12 13 syl
 |-  ( ph -> ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V )
15 6 14 eqeltrrid
 |-  ( ph -> { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } e. _V )
16 eqid
 |-  ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) )
17 16 rnmpo
 |-  ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) }
18 ssltex2
 |-  ( L < R e. _V )
19 1 18 syl
 |-  ( ph -> R e. _V )
20 ssltex2
 |-  ( M < S e. _V )
21 2 20 syl
 |-  ( ph -> S e. _V )
22 16 mpoexg
 |-  ( ( R e. _V /\ S e. _V ) -> ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V )
23 19 21 22 syl2anc
 |-  ( ph -> ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V )
24 rnexg
 |-  ( ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V -> ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V )
25 23 24 syl
 |-  ( ph -> ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V )
26 17 25 eqeltrrid
 |-  ( ph -> { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } e. _V )
27 15 26 unexd
 |-  ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) e. _V )
28 snex
 |-  { ( A x.s B ) } e. _V
29 28 a1i
 |-  ( ph -> { ( A x.s B ) } e. _V )
30 ssltss1
 |-  ( L < L C_ No )
31 1 30 syl
 |-  ( ph -> L C_ No )
32 31 adantr
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> L C_ No )
33 simprl
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> p e. L )
34 32 33 sseldd
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> p e. No )
35 2 scutcld
 |-  ( ph -> ( M |s S ) e. No )
36 4 35 eqeltrd
 |-  ( ph -> B e. No )
37 36 adantr
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> B e. No )
38 34 37 mulscld
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s B ) e. No )
39 1 scutcld
 |-  ( ph -> ( L |s R ) e. No )
40 3 39 eqeltrd
 |-  ( ph -> A e. No )
41 40 adantr
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> A e. No )
42 ssltss1
 |-  ( M < M C_ No )
43 2 42 syl
 |-  ( ph -> M C_ No )
44 43 adantr
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> M C_ No )
45 simprr
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> q e. M )
46 44 45 sseldd
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> q e. No )
47 41 46 mulscld
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s q ) e. No )
48 38 47 addscld
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) +s ( A x.s q ) ) e. No )
49 34 46 mulscld
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s q ) e. No )
50 48 49 subscld
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No )
51 eleq1
 |-  ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( a e. No <-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No ) )
52 50 51 syl5ibrcom
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> a e. No ) )
53 52 rexlimdvva
 |-  ( ph -> ( E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> a e. No ) )
54 53 abssdv
 |-  ( ph -> { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } C_ No )
55 ssltss2
 |-  ( L < R C_ No )
56 1 55 syl
 |-  ( ph -> R C_ No )
57 56 adantr
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> R C_ No )
58 simprl
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> r e. R )
59 57 58 sseldd
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> r e. No )
60 36 adantr
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> B e. No )
61 59 60 mulscld
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s B ) e. No )
62 40 adantr
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> A e. No )
63 ssltss2
 |-  ( M < S C_ No )
64 2 63 syl
 |-  ( ph -> S C_ No )
65 64 adantr
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> S C_ No )
66 simprr
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> s e. S )
67 65 66 sseldd
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> s e. No )
68 62 67 mulscld
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s s ) e. No )
69 61 68 addscld
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) +s ( A x.s s ) ) e. No )
70 59 67 mulscld
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s s ) e. No )
71 69 70 subscld
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No )
72 eleq1
 |-  ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( b e. No <-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No ) )
73 71 72 syl5ibrcom
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> b e. No ) )
74 73 rexlimdvva
 |-  ( ph -> ( E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> b e. No ) )
75 74 abssdv
 |-  ( ph -> { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } C_ No )
76 54 75 unssd
 |-  ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) C_ No )
77 40 36 mulscld
 |-  ( ph -> ( A x.s B ) e. No )
78 77 snssd
 |-  ( ph -> { ( A x.s B ) } C_ No )
79 elun
 |-  ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) )
80 vex
 |-  x e. _V
81 eqeq1
 |-  ( a = x -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) )
82 81 2rexbidv
 |-  ( a = x -> ( E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) )
83 80 82 elab
 |-  ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } <-> E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) )
84 eqeq1
 |-  ( b = x -> ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) )
85 84 2rexbidv
 |-  ( b = x -> ( E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) )
86 80 85 elab
 |-  ( x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } <-> E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) )
87 83 86 orbi12i
 |-  ( ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) )
88 79 87 bitri
 |-  ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) )
89 38 47 49 addsubsd
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) = ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) )
90 scutcut
 |-  ( L < ( ( L |s R ) e. No /\ L <
91 1 90 syl
 |-  ( ph -> ( ( L |s R ) e. No /\ L <
92 91 simp2d
 |-  ( ph -> L <
93 92 adantr
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> L <
94 ovex
 |-  ( L |s R ) e. _V
95 94 snid
 |-  ( L |s R ) e. { ( L |s R ) }
96 3 95 eqeltrdi
 |-  ( ph -> A e. { ( L |s R ) } )
97 96 adantr
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> A e. { ( L |s R ) } )
98 93 33 97 ssltsepcd
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> p 
99 scutcut
 |-  ( M < ( ( M |s S ) e. No /\ M <
100 2 99 syl
 |-  ( ph -> ( ( M |s S ) e. No /\ M <
101 100 simp2d
 |-  ( ph -> M <
102 101 adantr
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> M <
103 ovex
 |-  ( M |s S ) e. _V
104 103 snid
 |-  ( M |s S ) e. { ( M |s S ) }
105 4 104 eqeltrdi
 |-  ( ph -> B e. { ( M |s S ) } )
106 105 adantr
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> B e. { ( M |s S ) } )
107 102 45 106 ssltsepcd
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> q 
108 34 41 46 37 98 107 sltmuld
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) -s ( p x.s q ) ) 
109 38 49 subscld
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) -s ( p x.s q ) ) e. No )
110 77 adantr
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s B ) e. No )
111 109 47 110 sltaddsubd
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) )  ( ( p x.s B ) -s ( p x.s q ) ) 
112 108 111 mpbird
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) 
113 89 112 eqbrtrd
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) 
114 breq1
 |-  ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( x  ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) 
115 113 114 syl5ibrcom
 |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> x 
116 115 rexlimdvva
 |-  ( ph -> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> x 
117 61 68 70 addsubsd
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) = ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) )
118 1 adantr
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> L <
119 118 90 syl
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( L |s R ) e. No /\ L <
120 119 simp3d
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> { ( L |s R ) } <
121 3 adantr
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> A = ( L |s R ) )
122 121 95 eqeltrdi
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> A e. { ( L |s R ) } )
123 120 122 58 ssltsepcd
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> A 
124 2 adantr
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> M <
125 124 99 syl
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( M |s S ) e. No /\ M <
126 125 simp3d
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> { ( M |s S ) } <
127 4 adantr
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> B = ( M |s S ) )
128 127 104 eqeltrdi
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> B e. { ( M |s S ) } )
129 126 128 66 ssltsepcd
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> B 
130 62 59 60 67 123 129 sltmuld
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( A x.s s ) -s ( A x.s B ) ) 
131 61 70 subscld
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) -s ( r x.s s ) ) e. No )
132 77 adantr
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s B ) e. No )
133 131 68 132 sltaddsubd
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) )  ( ( r x.s B ) -s ( r x.s s ) ) 
134 61 70 132 68 sltsubsub2bd
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) -s ( r x.s s ) )  ( ( A x.s s ) -s ( A x.s B ) ) 
135 133 134 bitrd
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) )  ( ( A x.s s ) -s ( A x.s B ) ) 
136 130 135 mpbird
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) 
137 117 136 eqbrtrd
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) 
138 breq1
 |-  ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( x  ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) 
139 137 138 syl5ibrcom
 |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> x 
140 139 rexlimdvva
 |-  ( ph -> ( E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> x 
141 116 140 jaod
 |-  ( ph -> ( ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) -> x 
142 88 141 biimtrid
 |-  ( ph -> ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) -> x 
143 142 imp
 |-  ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) -> x 
144 velsn
 |-  ( y e. { ( A x.s B ) } <-> y = ( A x.s B ) )
145 breq2
 |-  ( y = ( A x.s B ) -> ( x  x 
146 144 145 sylbi
 |-  ( y e. { ( A x.s B ) } -> ( x  x 
147 143 146 syl5ibrcom
 |-  ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) -> ( y e. { ( A x.s B ) } -> x 
148 147 3impia
 |-  ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) /\ y e. { ( A x.s B ) } ) -> x 
149 27 29 76 78 148 ssltd
 |-  ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <