| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssltmul1.1 |
|- ( ph -> L < |
| 2 |
|
ssltmul1.2 |
|- ( ph -> M < |
| 3 |
|
ssltmul1.3 |
|- ( ph -> A = ( L |s R ) ) |
| 4 |
|
ssltmul1.4 |
|- ( ph -> B = ( M |s S ) ) |
| 5 |
|
eqid |
|- ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) |
| 6 |
5
|
rnmpo |
|- ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } |
| 7 |
|
ssltex1 |
|- ( L < L e. _V ) |
| 8 |
1 7
|
syl |
|- ( ph -> L e. _V ) |
| 9 |
|
ssltex1 |
|- ( M < M e. _V ) |
| 10 |
2 9
|
syl |
|- ( ph -> M e. _V ) |
| 11 |
5
|
mpoexg |
|- ( ( L e. _V /\ M e. _V ) -> ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ph -> ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) |
| 13 |
|
rnexg |
|- ( ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V -> ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) |
| 14 |
12 13
|
syl |
|- ( ph -> ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) |
| 15 |
6 14
|
eqeltrrid |
|- ( ph -> { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } e. _V ) |
| 16 |
|
eqid |
|- ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) |
| 17 |
16
|
rnmpo |
|- ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } |
| 18 |
|
ssltex2 |
|- ( L < R e. _V ) |
| 19 |
1 18
|
syl |
|- ( ph -> R e. _V ) |
| 20 |
|
ssltex2 |
|- ( M < S e. _V ) |
| 21 |
2 20
|
syl |
|- ( ph -> S e. _V ) |
| 22 |
16
|
mpoexg |
|- ( ( R e. _V /\ S e. _V ) -> ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) |
| 23 |
19 21 22
|
syl2anc |
|- ( ph -> ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) |
| 24 |
|
rnexg |
|- ( ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V -> ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) |
| 25 |
23 24
|
syl |
|- ( ph -> ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) |
| 26 |
17 25
|
eqeltrrid |
|- ( ph -> { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } e. _V ) |
| 27 |
15 26
|
unexd |
|- ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) e. _V ) |
| 28 |
|
snex |
|- { ( A x.s B ) } e. _V |
| 29 |
28
|
a1i |
|- ( ph -> { ( A x.s B ) } e. _V ) |
| 30 |
|
ssltss1 |
|- ( L < L C_ No ) |
| 31 |
1 30
|
syl |
|- ( ph -> L C_ No ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> L C_ No ) |
| 33 |
|
simprl |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> p e. L ) |
| 34 |
32 33
|
sseldd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> p e. No ) |
| 35 |
2
|
scutcld |
|- ( ph -> ( M |s S ) e. No ) |
| 36 |
4 35
|
eqeltrd |
|- ( ph -> B e. No ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> B e. No ) |
| 38 |
34 37
|
mulscld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s B ) e. No ) |
| 39 |
1
|
scutcld |
|- ( ph -> ( L |s R ) e. No ) |
| 40 |
3 39
|
eqeltrd |
|- ( ph -> A e. No ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> A e. No ) |
| 42 |
|
ssltss1 |
|- ( M < M C_ No ) |
| 43 |
2 42
|
syl |
|- ( ph -> M C_ No ) |
| 44 |
43
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> M C_ No ) |
| 45 |
|
simprr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> q e. M ) |
| 46 |
44 45
|
sseldd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> q e. No ) |
| 47 |
41 46
|
mulscld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s q ) e. No ) |
| 48 |
38 47
|
addscld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) +s ( A x.s q ) ) e. No ) |
| 49 |
34 46
|
mulscld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s q ) e. No ) |
| 50 |
48 49
|
subscld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No ) |
| 51 |
|
eleq1 |
|- ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( a e. No <-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No ) ) |
| 52 |
50 51
|
syl5ibrcom |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> a e. No ) ) |
| 53 |
52
|
rexlimdvva |
|- ( ph -> ( E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> a e. No ) ) |
| 54 |
53
|
abssdv |
|- ( ph -> { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } C_ No ) |
| 55 |
|
ssltss2 |
|- ( L < R C_ No ) |
| 56 |
1 55
|
syl |
|- ( ph -> R C_ No ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> R C_ No ) |
| 58 |
|
simprl |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> r e. R ) |
| 59 |
57 58
|
sseldd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> r e. No ) |
| 60 |
36
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> B e. No ) |
| 61 |
59 60
|
mulscld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s B ) e. No ) |
| 62 |
40
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> A e. No ) |
| 63 |
|
ssltss2 |
|- ( M < S C_ No ) |
| 64 |
2 63
|
syl |
|- ( ph -> S C_ No ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> S C_ No ) |
| 66 |
|
simprr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> s e. S ) |
| 67 |
65 66
|
sseldd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> s e. No ) |
| 68 |
62 67
|
mulscld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s s ) e. No ) |
| 69 |
61 68
|
addscld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) +s ( A x.s s ) ) e. No ) |
| 70 |
59 67
|
mulscld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s s ) e. No ) |
| 71 |
69 70
|
subscld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No ) |
| 72 |
|
eleq1 |
|- ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( b e. No <-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No ) ) |
| 73 |
71 72
|
syl5ibrcom |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> b e. No ) ) |
| 74 |
73
|
rexlimdvva |
|- ( ph -> ( E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> b e. No ) ) |
| 75 |
74
|
abssdv |
|- ( ph -> { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } C_ No ) |
| 76 |
54 75
|
unssd |
|- ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) C_ No ) |
| 77 |
40 36
|
mulscld |
|- ( ph -> ( A x.s B ) e. No ) |
| 78 |
77
|
snssd |
|- ( ph -> { ( A x.s B ) } C_ No ) |
| 79 |
|
elun |
|- ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) |
| 80 |
|
vex |
|- x e. _V |
| 81 |
|
eqeq1 |
|- ( a = x -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) |
| 82 |
81
|
2rexbidv |
|- ( a = x -> ( E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) |
| 83 |
80 82
|
elab |
|- ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } <-> E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) |
| 84 |
|
eqeq1 |
|- ( b = x -> ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
| 85 |
84
|
2rexbidv |
|- ( b = x -> ( E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
| 86 |
80 85
|
elab |
|- ( x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } <-> E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) |
| 87 |
83 86
|
orbi12i |
|- ( ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
| 88 |
79 87
|
bitri |
|- ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
| 89 |
38 47 49
|
addsubsd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) = ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) ) |
| 90 |
|
scutcut |
|- ( L < ( ( L |s R ) e. No /\ L < |
| 91 |
1 90
|
syl |
|- ( ph -> ( ( L |s R ) e. No /\ L < |
| 92 |
91
|
simp2d |
|- ( ph -> L < |
| 93 |
92
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> L < |
| 94 |
|
ovex |
|- ( L |s R ) e. _V |
| 95 |
94
|
snid |
|- ( L |s R ) e. { ( L |s R ) } |
| 96 |
3 95
|
eqeltrdi |
|- ( ph -> A e. { ( L |s R ) } ) |
| 97 |
96
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> A e. { ( L |s R ) } ) |
| 98 |
93 33 97
|
ssltsepcd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> p |
| 99 |
|
scutcut |
|- ( M < ( ( M |s S ) e. No /\ M < |
| 100 |
2 99
|
syl |
|- ( ph -> ( ( M |s S ) e. No /\ M < |
| 101 |
100
|
simp2d |
|- ( ph -> M < |
| 102 |
101
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> M < |
| 103 |
|
ovex |
|- ( M |s S ) e. _V |
| 104 |
103
|
snid |
|- ( M |s S ) e. { ( M |s S ) } |
| 105 |
4 104
|
eqeltrdi |
|- ( ph -> B e. { ( M |s S ) } ) |
| 106 |
105
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> B e. { ( M |s S ) } ) |
| 107 |
102 45 106
|
ssltsepcd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> q |
| 108 |
34 41 46 37 98 107
|
sltmuld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) -s ( p x.s q ) ) |
| 109 |
38 49
|
subscld |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) -s ( p x.s q ) ) e. No ) |
| 110 |
77
|
adantr |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s B ) e. No ) |
| 111 |
109 47 110
|
sltaddsubd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) ( ( p x.s B ) -s ( p x.s q ) ) |
| 112 |
108 111
|
mpbird |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) |
| 113 |
89 112
|
eqbrtrd |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
| 114 |
|
breq1 |
|- ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( x ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
| 115 |
113 114
|
syl5ibrcom |
|- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> x |
| 116 |
115
|
rexlimdvva |
|- ( ph -> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> x |
| 117 |
61 68 70
|
addsubsd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) = ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ) |
| 118 |
1
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> L < |
| 119 |
118 90
|
syl |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( L |s R ) e. No /\ L < |
| 120 |
119
|
simp3d |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> { ( L |s R ) } < |
| 121 |
3
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> A = ( L |s R ) ) |
| 122 |
121 95
|
eqeltrdi |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> A e. { ( L |s R ) } ) |
| 123 |
120 122 58
|
ssltsepcd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> A |
| 124 |
2
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> M < |
| 125 |
124 99
|
syl |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( M |s S ) e. No /\ M < |
| 126 |
125
|
simp3d |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> { ( M |s S ) } < |
| 127 |
4
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> B = ( M |s S ) ) |
| 128 |
127 104
|
eqeltrdi |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> B e. { ( M |s S ) } ) |
| 129 |
126 128 66
|
ssltsepcd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> B |
| 130 |
62 59 60 67 123 129
|
sltmuld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( A x.s s ) -s ( A x.s B ) ) |
| 131 |
61 70
|
subscld |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) -s ( r x.s s ) ) e. No ) |
| 132 |
77
|
adantr |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s B ) e. No ) |
| 133 |
131 68 132
|
sltaddsubd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ( ( r x.s B ) -s ( r x.s s ) ) |
| 134 |
61 70 132 68
|
sltsubsub2bd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) -s ( r x.s s ) ) ( ( A x.s s ) -s ( A x.s B ) ) |
| 135 |
133 134
|
bitrd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ( ( A x.s s ) -s ( A x.s B ) ) |
| 136 |
130 135
|
mpbird |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) |
| 137 |
117 136
|
eqbrtrd |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
| 138 |
|
breq1 |
|- ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( x ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
| 139 |
137 138
|
syl5ibrcom |
|- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> x |
| 140 |
139
|
rexlimdvva |
|- ( ph -> ( E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> x |
| 141 |
116 140
|
jaod |
|- ( ph -> ( ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) -> x |
| 142 |
88 141
|
biimtrid |
|- ( ph -> ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) -> x |
| 143 |
142
|
imp |
|- ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) -> x |
| 144 |
|
velsn |
|- ( y e. { ( A x.s B ) } <-> y = ( A x.s B ) ) |
| 145 |
|
breq2 |
|- ( y = ( A x.s B ) -> ( x x |
| 146 |
144 145
|
sylbi |
|- ( y e. { ( A x.s B ) } -> ( x x |
| 147 |
143 146
|
syl5ibrcom |
|- ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) -> ( y e. { ( A x.s B ) } -> x |
| 148 |
147
|
3impia |
|- ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) /\ y e. { ( A x.s B ) } ) -> x |
| 149 |
27 29 76 78 148
|
ssltd |
|- ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) < |