Step |
Hyp |
Ref |
Expression |
1 |
|
ssltmul2.1 |
|- ( ph -> L < |
2 |
|
ssltmul2.2 |
|- ( ph -> M < |
3 |
|
ssltmul2.3 |
|- ( ph -> A = ( L |s R ) ) |
4 |
|
ssltmul2.4 |
|- ( ph -> B = ( M |s S ) ) |
5 |
|
snex |
|- { ( A x.s B ) } e. _V |
6 |
5
|
a1i |
|- ( ph -> { ( A x.s B ) } e. _V ) |
7 |
|
eqid |
|- ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) = ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) |
8 |
7
|
rnmpo |
|- ran ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) = { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } |
9 |
|
ssltex1 |
|- ( L < L e. _V ) |
10 |
1 9
|
syl |
|- ( ph -> L e. _V ) |
11 |
|
ssltex2 |
|- ( M < S e. _V ) |
12 |
2 11
|
syl |
|- ( ph -> S e. _V ) |
13 |
7
|
mpoexg |
|- ( ( L e. _V /\ S e. _V ) -> ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) |
14 |
10 12 13
|
syl2anc |
|- ( ph -> ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) |
15 |
|
rnexg |
|- ( ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V -> ran ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) |
16 |
14 15
|
syl |
|- ( ph -> ran ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) |
17 |
8 16
|
eqeltrrid |
|- ( ph -> { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } e. _V ) |
18 |
|
eqid |
|- ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) = ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) |
19 |
18
|
rnmpo |
|- ran ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) = { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } |
20 |
|
ssltex2 |
|- ( L < R e. _V ) |
21 |
1 20
|
syl |
|- ( ph -> R e. _V ) |
22 |
|
ssltex1 |
|- ( M < M e. _V ) |
23 |
2 22
|
syl |
|- ( ph -> M e. _V ) |
24 |
18
|
mpoexg |
|- ( ( R e. _V /\ M e. _V ) -> ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) |
25 |
21 23 24
|
syl2anc |
|- ( ph -> ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) |
26 |
|
rnexg |
|- ( ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V -> ran ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) |
27 |
25 26
|
syl |
|- ( ph -> ran ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) |
28 |
19 27
|
eqeltrrid |
|- ( ph -> { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } e. _V ) |
29 |
17 28
|
unexd |
|- ( ph -> ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) e. _V ) |
30 |
1
|
scutcld |
|- ( ph -> ( L |s R ) e. No ) |
31 |
3 30
|
eqeltrd |
|- ( ph -> A e. No ) |
32 |
2
|
scutcld |
|- ( ph -> ( M |s S ) e. No ) |
33 |
4 32
|
eqeltrd |
|- ( ph -> B e. No ) |
34 |
31 33
|
mulscld |
|- ( ph -> ( A x.s B ) e. No ) |
35 |
34
|
snssd |
|- ( ph -> { ( A x.s B ) } C_ No ) |
36 |
|
ssltss1 |
|- ( L < L C_ No ) |
37 |
1 36
|
syl |
|- ( ph -> L C_ No ) |
38 |
37
|
adantr |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> L C_ No ) |
39 |
|
simprl |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> t e. L ) |
40 |
38 39
|
sseldd |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> t e. No ) |
41 |
33
|
adantr |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> B e. No ) |
42 |
40 41
|
mulscld |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( t x.s B ) e. No ) |
43 |
31
|
adantr |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> A e. No ) |
44 |
|
ssltss2 |
|- ( M < S C_ No ) |
45 |
2 44
|
syl |
|- ( ph -> S C_ No ) |
46 |
45
|
adantr |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> S C_ No ) |
47 |
|
simprr |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> u e. S ) |
48 |
46 47
|
sseldd |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> u e. No ) |
49 |
43 48
|
mulscld |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s u ) e. No ) |
50 |
42 49
|
addscld |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( t x.s B ) +s ( A x.s u ) ) e. No ) |
51 |
40 48
|
mulscld |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( t x.s u ) e. No ) |
52 |
50 51
|
subscld |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) e. No ) |
53 |
|
eleq1 |
|- ( c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( c e. No <-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) e. No ) ) |
54 |
52 53
|
syl5ibrcom |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> c e. No ) ) |
55 |
54
|
rexlimdvva |
|- ( ph -> ( E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> c e. No ) ) |
56 |
55
|
abssdv |
|- ( ph -> { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } C_ No ) |
57 |
|
ssltss2 |
|- ( L < R C_ No ) |
58 |
1 57
|
syl |
|- ( ph -> R C_ No ) |
59 |
58
|
adantr |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> R C_ No ) |
60 |
|
simprl |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> v e. R ) |
61 |
59 60
|
sseldd |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> v e. No ) |
62 |
33
|
adantr |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> B e. No ) |
63 |
61 62
|
mulscld |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( v x.s B ) e. No ) |
64 |
31
|
adantr |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> A e. No ) |
65 |
|
ssltss1 |
|- ( M < M C_ No ) |
66 |
2 65
|
syl |
|- ( ph -> M C_ No ) |
67 |
66
|
adantr |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> M C_ No ) |
68 |
|
simprr |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> w e. M ) |
69 |
67 68
|
sseldd |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> w e. No ) |
70 |
64 69
|
mulscld |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s w ) e. No ) |
71 |
63 70
|
addscld |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( v x.s B ) +s ( A x.s w ) ) e. No ) |
72 |
61 69
|
mulscld |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( v x.s w ) e. No ) |
73 |
71 72
|
subscld |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) e. No ) |
74 |
|
eleq1 |
|- ( d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( d e. No <-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) e. No ) ) |
75 |
73 74
|
syl5ibrcom |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> d e. No ) ) |
76 |
75
|
rexlimdvva |
|- ( ph -> ( E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> d e. No ) ) |
77 |
76
|
abssdv |
|- ( ph -> { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } C_ No ) |
78 |
56 77
|
unssd |
|- ( ph -> ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) C_ No ) |
79 |
|
elun |
|- ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( y e. { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } \/ y e. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) |
80 |
|
vex |
|- y e. _V |
81 |
|
eqeq1 |
|- ( c = y -> ( c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) <-> y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) ) |
82 |
81
|
2rexbidv |
|- ( c = y -> ( E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) <-> E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) ) |
83 |
80 82
|
elab |
|- ( y e. { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } <-> E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) |
84 |
|
eqeq1 |
|- ( d = y -> ( d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) <-> y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) |
85 |
84
|
2rexbidv |
|- ( d = y -> ( E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) <-> E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) |
86 |
80 85
|
elab |
|- ( y e. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } <-> E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) |
87 |
83 86
|
orbi12i |
|- ( ( y e. { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } \/ y e. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) |
88 |
79 87
|
bitri |
|- ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) |
89 |
|
scutcut |
|- ( L < ( ( L |s R ) e. No /\ L < |
90 |
1 89
|
syl |
|- ( ph -> ( ( L |s R ) e. No /\ L < |
91 |
90
|
simp2d |
|- ( ph -> L < |
92 |
91
|
adantr |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> L < |
93 |
|
ovex |
|- ( L |s R ) e. _V |
94 |
93
|
snid |
|- ( L |s R ) e. { ( L |s R ) } |
95 |
3 94
|
eqeltrdi |
|- ( ph -> A e. { ( L |s R ) } ) |
96 |
95
|
adantr |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> A e. { ( L |s R ) } ) |
97 |
92 39 96
|
ssltsepcd |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> t |
98 |
|
scutcut |
|- ( M < ( ( M |s S ) e. No /\ M < |
99 |
2 98
|
syl |
|- ( ph -> ( ( M |s S ) e. No /\ M < |
100 |
99
|
simp3d |
|- ( ph -> { ( M |s S ) } < |
101 |
100
|
adantr |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> { ( M |s S ) } < |
102 |
|
ovex |
|- ( M |s S ) e. _V |
103 |
102
|
snid |
|- ( M |s S ) e. { ( M |s S ) } |
104 |
4 103
|
eqeltrdi |
|- ( ph -> B e. { ( M |s S ) } ) |
105 |
104
|
adantr |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> B e. { ( M |s S ) } ) |
106 |
101 105 47
|
ssltsepcd |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> B |
107 |
40 43 41 48 97 106
|
sltmuld |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( t x.s u ) -s ( t x.s B ) ) |
108 |
34
|
adantr |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s B ) e. No ) |
109 |
51 42 49 108
|
sltsubsub2bd |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s u ) -s ( t x.s B ) ) ( ( A x.s B ) -s ( A x.s u ) ) |
110 |
42 51
|
subscld |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( t x.s B ) -s ( t x.s u ) ) e. No ) |
111 |
108 49 110
|
sltsubaddd |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( A x.s B ) -s ( A x.s u ) ) ( A x.s B ) |
112 |
109 111
|
bitrd |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s u ) -s ( t x.s B ) ) ( A x.s B ) |
113 |
107 112
|
mpbid |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s B ) |
114 |
42 49 51
|
addsubsd |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) = ( ( ( t x.s B ) -s ( t x.s u ) ) +s ( A x.s u ) ) ) |
115 |
113 114
|
breqtrrd |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s B ) |
116 |
|
breq2 |
|- ( y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( ( A x.s B ) ( A x.s B ) |
117 |
115 116
|
syl5ibrcom |
|- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( A x.s B ) |
118 |
117
|
rexlimdvva |
|- ( ph -> ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( A x.s B ) |
119 |
90
|
simp3d |
|- ( ph -> { ( L |s R ) } < |
120 |
119
|
adantr |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> { ( L |s R ) } < |
121 |
95
|
adantr |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> A e. { ( L |s R ) } ) |
122 |
120 121 60
|
ssltsepcd |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> A |
123 |
99
|
simp2d |
|- ( ph -> M < |
124 |
123
|
adantr |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> M < |
125 |
104
|
adantr |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> B e. { ( M |s S ) } ) |
126 |
124 68 125
|
ssltsepcd |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> w |
127 |
64 61 69 62 122 126
|
sltmuld |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( A x.s B ) -s ( A x.s w ) ) |
128 |
34
|
adantr |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s B ) e. No ) |
129 |
63 72
|
subscld |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( v x.s B ) -s ( v x.s w ) ) e. No ) |
130 |
128 70 129
|
sltsubaddd |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( A x.s B ) -s ( A x.s w ) ) ( A x.s B ) |
131 |
127 130
|
mpbid |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s B ) |
132 |
63 70 72
|
addsubsd |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) = ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) ) |
133 |
131 132
|
breqtrrd |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s B ) |
134 |
|
breq2 |
|- ( y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( ( A x.s B ) ( A x.s B ) |
135 |
133 134
|
syl5ibrcom |
|- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( A x.s B ) |
136 |
135
|
rexlimdvva |
|- ( ph -> ( E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( A x.s B ) |
137 |
118 136
|
jaod |
|- ( ph -> ( ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) -> ( A x.s B ) |
138 |
88 137
|
biimtrid |
|- ( ph -> ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> ( A x.s B ) |
139 |
|
velsn |
|- ( x e. { ( A x.s B ) } <-> x = ( A x.s B ) ) |
140 |
|
breq1 |
|- ( x = ( A x.s B ) -> ( x ( A x.s B ) |
141 |
140
|
imbi2d |
|- ( x = ( A x.s B ) -> ( ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> x ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> ( A x.s B ) |
142 |
139 141
|
sylbi |
|- ( x e. { ( A x.s B ) } -> ( ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> x ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> ( A x.s B ) |
143 |
138 142
|
syl5ibrcom |
|- ( ph -> ( x e. { ( A x.s B ) } -> ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> x |
144 |
143
|
3imp |
|- ( ( ph /\ x e. { ( A x.s B ) } /\ y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) -> x |
145 |
6 29 35 78 144
|
ssltd |
|- ( ph -> { ( A x.s B ) } < |