Step |
Hyp |
Ref |
Expression |
1 |
|
ssltsn.1 |
|- ( ph -> A e. No ) |
2 |
|
ssltsn.2 |
|- ( ph -> B e. No ) |
3 |
|
ssltsn.3 |
|- ( ph -> A |
4 |
|
snex |
|- { A } e. _V |
5 |
4
|
a1i |
|- ( ph -> { A } e. _V ) |
6 |
|
snex |
|- { B } e. _V |
7 |
6
|
a1i |
|- ( ph -> { B } e. _V ) |
8 |
1
|
snssd |
|- ( ph -> { A } C_ No ) |
9 |
2
|
snssd |
|- ( ph -> { B } C_ No ) |
10 |
|
velsn |
|- ( x e. { A } <-> x = A ) |
11 |
|
velsn |
|- ( y e. { B } <-> y = B ) |
12 |
|
breq12 |
|- ( ( x = A /\ y = B ) -> ( x A |
13 |
10 11 12
|
syl2anb |
|- ( ( x e. { A } /\ y e. { B } ) -> ( x A |
14 |
3 13
|
syl5ibrcom |
|- ( ph -> ( ( x e. { A } /\ y e. { B } ) -> x |
15 |
14
|
3impib |
|- ( ( ph /\ x e. { A } /\ y e. { B } ) -> x |
16 |
5 7 8 9 15
|
ssltd |
|- ( ph -> { A } < |