Metamath Proof Explorer


Theorem ssltsn

Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025)

Ref Expression
Hypotheses ssltsn.1
|- ( ph -> A e. No )
ssltsn.2
|- ( ph -> B e. No )
ssltsn.3
|- ( ph -> A 
Assertion ssltsn
|- ( ph -> { A } <

Proof

Step Hyp Ref Expression
1 ssltsn.1
 |-  ( ph -> A e. No )
2 ssltsn.2
 |-  ( ph -> B e. No )
3 ssltsn.3
 |-  ( ph -> A 
4 snex
 |-  { A } e. _V
5 4 a1i
 |-  ( ph -> { A } e. _V )
6 snex
 |-  { B } e. _V
7 6 a1i
 |-  ( ph -> { B } e. _V )
8 1 snssd
 |-  ( ph -> { A } C_ No )
9 2 snssd
 |-  ( ph -> { B } C_ No )
10 velsn
 |-  ( x e. { A } <-> x = A )
11 velsn
 |-  ( y e. { B } <-> y = B )
12 breq12
 |-  ( ( x = A /\ y = B ) -> ( x  A 
13 10 11 12 syl2anb
 |-  ( ( x e. { A } /\ y e. { B } ) -> ( x  A 
14 3 13 syl5ibrcom
 |-  ( ph -> ( ( x e. { A } /\ y e. { B } ) -> x 
15 14 3impib
 |-  ( ( ph /\ x e. { A } /\ y e. { B } ) -> x 
16 5 7 8 9 15 ssltd
 |-  ( ph -> { A } <